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How to route a packet from 51 to 427

Using Local Information Only . ..

@ The process identifier
@ Port numbers of incident
channels

In an arbitrary connected bidirectional network, without any further
information:

only randomization can help!
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Random Algorithms

Deterministic Algorithm
(no randomization)

« Partially Correct
« Terminate

Sherwood
(use randomization)

« Partially Correct

« Terminate
Monte Carlo Las Vegas
« Partially Correct w.h.p. « Partially Correct
« Terminate « Terminate w.p.p.
Atlantic City

« Partially Correct w.h.p.
« Terminate w.p.p.
w.p.p. = with (strictly) positive probability
w.h.p. = with high probability, i.e., the probability depends on a parameter x such that the
probability converges to 1 when x goes to the infinite (w.h.p. = w.p.p.)
Remark: the Quicksort algorithm where the pivot is randomly chosen is a Sherwood algorithm.
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Random Local Algorithm (Las Vegas Algorithm)

Given a packet p with destination label d at
node u.

if d = u then
deliver p
else

pick i € {1,...,04} according to P,
send p via port number i
end if
P, is a probability distribution:
@ Vie{l,...,6u}, Pu(i) gives the
probability of picking i
@ P,:{1,...,6,} — [0,1] such that
ief1,.s,y Pl =1
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Random Local Algorithm (Las Vegas Algorithm)

Given a packet p with destination label d at

node u.
if d = u then
deliver p
else

pick i € {1,...,04} according to P,
send p via port number i
end if
P, is a probability distribution:
@ Vie{l,...,6u}, Pu(i) gives the
probability of picking i
@ P,:{1,...,6,} — [0,1] such that
Zie{l,m,éu} Py(i) =1
@ For example, P, may be a uniform

distribution:

Vi€ (L. 0}, Puli) = 5

E.g., Ps(1) = Ps(2) = Ps(3) = %
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Random Local Algorithm (Las Vegas Algorithm)

Routing from 51 to 42

Given a packet p with destination label d at
(e.g., using uniform distribution)

node u.
if d = u then
deliver p
else

pick i € {1,...,04} according to P,
send p via port number i
end if
P, is a probability distribution:
@ Vie{l,...,6u}, Pu(i) gives the
probability of picking i
@ P,:{1,...,6,} — [0,1] such that
Zie{l,m,éu} Py(i) =1
@ For example, P, may be a uniform

distribution:

Routing path: 51

Vi€ (L. 0}, Puli) = 5

E.g., Ps(1) = Ps(2) = Ps(3) = %
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Random Local Algorithm (Las Vegas Algorithm)

Routing from 51 to 42

Given a packet p with destination label d at
(e.g., using uniform distribution)

node u.
if d = u then
deliver p
else

pick i € {1,...,04} according to P,
send p via port number i
end if
P, is a probability distribution:
@ Vie{l,...,6u}, Pu(i) gives the
probability of picking i
@ P,:{1,...,6,} — [0,1] such that
Zie{l,m,éu} Py(i) =1
@ For example, P, may be a uniform

distribution:

Routing path: 51
Pick 3

Vi€ (L. 0}, Puli) = 5

E.g., Ps(1) = Ps(2) = Ps(3) = %
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Random Local Algorithm (Las Vegas Algorithm)

Routing from 51 to 42

Given a packet p with destination label d at
(e.g., using uniform distribution)

node u.
if d = u then
deliver p
else

pick i € {1,...,04} according to P,
send p via port number i
end if
P, is a probability distribution:
@ Vie{l,...,6u}, Pu(i) gives the
probability of picking i
@ P,:{1,...,6,} — [0,1] such that
Zie{l,m,éu} Py(i) =1
@ For example, P, may be a uniform

distribution:

Routing path: 51,17

Vi€ (L. 0}, Puli) = 5

E.g., Ps(1) = Ps(2) = Ps(3) = %
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Random Local Algorithm (Las Vegas Algorithm)

Routing from 51 to 42

Given a packet p with destination label d at
(e.g., using uniform distribution)

node u.
if d = u then
deliver p
else

pick i € {1,...,04} according to P,
send p via port number i
end if
P, is a probability distribution:
@ Vie{l,...,6u}, Pu(i) gives the
probability of picking i
@ P,:{1,...,6,} — [0,1] such that
Zie{l,m,éu} Py(i) =1
@ For example, P, may be a uniform

distribution:

Routing path: 51,17
Pick 2

Vi€ (L. 0}, Puli) = 5

E.g., Ps(1) = Ps(2) = Ps(3) = %

Routing using Local Information January 13, 2026

A. Cournier & S. Devismes (UPJV)



Random Local Algorithm (Las Vegas Algorithm)

Routing from 51 to 42

Given a packet p with destination label d at
(e.g., using uniform distribution)

node u.
if d = u then
deliver p
else

pick i € {1,...,04} according to P,
send p via port number i
end if
P, is a probability distribution:
@ Vie{l,...,6u}, Pu(i) gives the
probability of picking i
@ P,:{1,...,6,} — [0,1] such that
Zie{l,.“,éu} Py(i) =1
@ For example, P, may be a uniform

distribution:

Routing path: 51,17,11

Vi€ (L. 0}, Puli) = 5

E.g., Ps(1) = Ps(2) = Ps(3) = %

Routing using Local Information January 13, 2026

A. Cournier & S. Devismes (UPJV)



Random Local Algorithm (Las Vegas Algorithm)

Routing from 51 to 42

Given a packet p with destination label d at
(e.g., using uniform distribution)

node u.
if d = u then
deliver p
else

pick i € {1,...,04} according to P,
send p via port number i
end if
P, is a probability distribution:
@ Vie{l,...,6u}, Pu(i) gives the
probability of picking i
@ P,:{1,...,6,} — [0,1] such that
Zie{l,.“,éu} Py(i) =1
@ For example, P, may be a uniform

distribution:

Routing path: 51,17,11
Pick 3

Vi€ (L. 0}, Puli) = 5

E.g., Ps(1) = Ps(2) = Ps(3) = %
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Random Local Algorithm (Las Vegas Algorithm)

Routing from 51 to 42

Given a packet p with destination label d at
(e.g., using uniform distribution)

node u.
if d = u then
deliver p
else

pick i € {1,...,04} according to P,
send p via port number i
end if
P, is a probability distribution:
@ Vie{l,...,6u}, Pu(i) gives the
probability of picking i
@ P,:{1,...,6,} — [0,1] such that
Zie{l,.“,éu} Py(i) =1
@ For example, P, may be a uniform

distribution:

Routing path: 51,17,11,51

Vi€ (L. 0}, Puli) = 5

E.g., Ps(1) = Ps(2) = Ps(3) = %
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Random Local Algorithm (Las Vegas Algorithm)

Routing from 51 to 42

Given a packet p with destination label d at
(e.g., using uniform distribution)

node u.
if d = u then
deliver p
else

pick i € {1,...,04} according to P,
send p via port number i
end if
P, is a probability distribution:
@ Vie{l,...,6u}, Pu(i) gives the
probability of picking i
@ P,:{1,...,6,} — [0,1] such that
Zie{l,.“,éu} Py(i) =1
@ For example, P, may be a uniform

distribution:

Routing path: 51,17,11,51
Pick 1

Vi€ (L. 0}, Puli) = 5

E.g., Ps(1) = Ps(2) = Ps(3) = %
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Random Local Algorithm (Las Vegas Algorithm)

Routing from 51 to 42

Given a packet p with destination label d at
(e.g., using uniform distribution)

node u.
if d = u then
deliver p
else

pick i € {1,...,04} according to P,
send p via port number i
end if
P, is a probability distribution:
@ Vie{l,...,6u}, Pu(i) gives the
probability of picking i
@ P,:{1,...,6,} — [0,1] such that
Zie{l,.“,éu} Py(i) =1
@ For example, P, may be a uniform

distribution:

Routing path: 51,17,11,51,25

Vi€ (L. 0}, Puli) = 5

E.g., Ps(1) = Ps(2) = Ps(3) = %
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Random Local Algorithm (Las Vegas Algorithm)

Routing from 51 to 42

Given a packet p with destination label d at
(e.g., using uniform distribution)

node u.
if d = u then
deliver p
else

pick i € {1,...,04} according to P,
send p via port number i
end if
P, is a probability distribution:
@ Vie{l,...,6u}, Pu(i) gives the
probability of picking i
@ P,:{1,...,6,} — [0,1] such that
Zie{l,.“,éu} Py(i) =1
@ For example, P, may be a uniform

distribution:

Routing path: 51,17,11,51,25
Pick 3

Vi€ (L. 0}, Puli) = 5

E.g., Ps(1) = Ps(2) = Ps(3) = %
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Random Local Algorithm (Las Vegas Algorithm)

Routing from 51 to 42

Given a packet p with destination label d at
(e.g., using uniform distribution)

node u.
if d = u then
deliver p
else

pick i € {1,...,04} according to P,
send p via port number i
end if
P, is a probability distribution:
@ Vie{l,...,6u}, Pu(i) gives the
probability of picking i
@ P,:{1,...,6,} — [0,1] such that
Zie{l,.“,éu} Py(i) =1
@ For example, P, may be a uniform

distribution:

Routing path: 51,17,11,51,25,42
Vi€ {180}, Puli) = 5

E.g., Ps(1) = Ps(2) = Ps(3) = %
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Random Local Algorithm (Las Vegas Algorithm)

Given a packet p with destination label d at

node u. Routing from 51 to 42
if d = u then (e.g., using uniform distribution)
deliver p
else

pick i € {1,...,04} according to P,
send p via port number i
end if
P, is a probability distribution:
@ Vie{l,...,6u}, Pu(i) gives the
probability of picking i
@ P,:{1,...,6,} — [0,1] such that
ief1,.s,y Pl =1

@ For example, P, may be a uniform Routing path: 51,17,11,51,25,42
distribution:

1
Vie{l,...,0u}, Pu(i) = —
Ou
Eg., Ps(1) = Pg(2) = Ps(3) = 3
@ Formally, 51,17,11,51,25,42 = prefix of a
(standard) random walk

A. Cournier & S. Devismes (UPJV)
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Routing using Local Information:
Random Walks

(also called Drunkard’s Walks)

Réseaux & Communication
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@ Introduction
© Correctness

© Complexity of the Standard Random Walk
@ Relevant Quantities
@ Tool: Markov Chains
o Hitting Time of the Standard Random Walk
@ Cover Time of the Standard Random Walk

@ Optimal (Pure) Random Walk
© Conclusion

@ References
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Roadmap

@ Introduction
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Let G = (V, E) be a finite, simple, and connected graph with order
n=|V|>2 and size m = |E|

Vue V, let N(u) ={v | {u,v} € E} be the neighborhood of wu.

N[u] = N(u) U {u} is the closed neighborhood of u and 6, = |N(u)| is the
degree of u
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Transition Probability Matrix

We will consider pure random walks where the probability distribution at
each node is constant!

The probability distributions are stored in a transition probability matrix
P for G:
P = (p(u,v))uvev € [0,1]"*V

@ p(u,v) is the probability of moving from u to v

Yn case the probability distributions evolve along the time, a random walk is biased,
e.g., the simulated annealing is a biased random walk in a state space

2 € N[u]: to be more general, we allow a walk to stay for sometime at some nodes.
A. Cournier & S. Devismes (UPJV)
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Transition Probability Matrix

We will consider pure random walks where the probability distribution at
each node is constant!

The probability distributions are stored in a transition probability matrix
P for G:

P = (p(u,v))uvev € [0,1]"*V

@ p(u,v) is the probability of moving from u to v

o Vue V., enpy P(u,v) =1 and v ¢ Nu] = p(u,v) =0, indeed a
walk is a graph traversal?

Yn case the probability distributions evolve along the time, a random walk is biased,
e.g., the simulated annealing is a biased random walk in a state space
2 € N[u]: to be more general, we allow a walk to stay for sometime at some nodes.
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Transition Probability Matrix

We will consider pure random walks where the probability distribution at
each node is constant!

The probability distributions are stored in a transition probability matrix
P for G:

P = (p(u,v))uvev € [0,1]"*V

@ p(u,v) is the probability of moving from u to v

o Vue V., enpy P(u,v) =1 and v ¢ Nu] = p(u,v) =0, indeed a
walk is a graph traversal?

Let P(G) be the set of all transition probability matrix for G

Yn case the probability distributions evolve along the time, a random walk is biased,
e.g., the simulated annealing is a biased random walk in a state space
2 € N[u]: to be more general, we allow a walk to stay for sometime at some nodes.

A. Cournier & S. Devismes (UPJV)
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Example: Uniform Transition Probability Matrix

Yu,v e V:
o v¢ N(u)= p(u,v) =0
1

o veENu)=p(uv)=ys

Remark: Vu, p(u, u) = 0, so no wait!
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Random Walk

Definition

A random walk w = (wp, w1, ...) on G starting at vertex u under

P € P(G) is an infinite sequence of random variables w; whose domain is
V such that

@ wo = u with probability 1, and

e Vi € IN, the (conditional) probability that wjy; = w, provided that
wi = v, is p(v,w)

A. Cournier & S. Devismes (UPJV)
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Random Walk

Example

The infinite random sequence (51,17,11)“ is a random walk on the graph
given below under a uniform transition probability matrix.

Remark: a random walk on a graph under a uniform transition probability
matrix is called a standard random walk

A. Cournier & S. Devismes (UPJV)
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Roadmap

© Correctness
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Correctness of the Random-walk-based Algorithm

Correctness = Partial Correctness + Termination

Partial Correctness: Trivial! The algorithm stops only if the packet has
reached its destination.

Termination almost sure: Termination with probability one (Las Vegas
Algorithm).
l.e., there are infinite executions where the destination is

never reached (e.g., (51,17,11)%), yet the overall probability
of the occurrence of such executions is 0.

The almost sure termination is due to the fact that any vertex has
probability 1 of occurring in any standard random walk on G.
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Characterization

Let S = (Vs, Es) be the digraph such that
e Vs =1V and
e Es = {(u,v) € V? | p(u,v) > 0}

For every u,v € V, v has probability 1 of occurring in any random walk on
G starting at vertex u under P € P(G)

if and only if

S is strongly connected. )

v has probability 1 of occurring in any standard random walk on G.
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Proof of Theorem 1

Necessary Condition

Assume S is not strongly connected and let u, v be two nodes of S such
that v is not reachable from u. (u # v)

A. Cournier & S. Devismes (UPJV) Routing using Local Information January 13, 2026
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Proof of Theorem 1

Necessary Condition

Assume S is not strongly connected and let u, v be two nodes of S such
that v is not reachable from u. (u # v)

Assume, by the contradiction, that v occurs in a random walk on G
starting at vertex u under P.

Let SP by the smallest prefix of the walk starting from u and ending with v.
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Proof of Theorem 1

Necessary Condition

Assume S is not strongly connected and let u, v be two nodes of S such
that v is not reachable from u. (u # v)

Assume, by the contradiction, that v occurs in a random walk on G
starting at vertex u under P.

Let SP by the smallest prefix of the walk starting from u and ending with v.

Every two consecutive nodes w and w’ in SP satisfies p(w, w’) > 0, which
in turn implies (w, w’) € Es.

SP is a (directed) path from u to v in S: v is reachable from v in S, a
contradiction. O
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Proof of Theorem 1

Sufficient Condition

Let w be any random walk on G starting at vertex u under P. Let
Pmin = min{p(w, w’) | (w,w’) € Es}.
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Proof of Theorem 1

Sufficient Condition

Let w be any random walk on G starting at vertex u under P. Let
Pmin = min{p(w,w’) | (w,w’) € Es}.

Pmin > 0, by definition of S.
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Proof of Theorem 1

Sufficient Condition

Let w be any random walk on G starting at vertex u under P. Let
Pmin = min{p(w,w’) | (w,w’) € Es}.

Pmin > 0, by definition of S.

Since S is strongly connected and n > 1, its diameter D satisfies
1 <D< n.
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Proof of Theorem 1

Sufficient Condition

Let w be any random walk on G starting at vertex u under P. Let
Prin = min{p(w, w') | (w,w’) € Es}.

Pmin > 0, by definition of S.

Since S is strongly connected and n > 1, its diameter D satisfies
1 <D< n.

In every suffix s of w, the probability that v occurs among the first D
values of s is at least 0 < (pmin)D < 1. Indeed, there is an elementary
path of length at most D from any vertex to v in S.
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Proof of Theorem 1

Sufficient Condition

Let w be any random walk on G starting at vertex u under P. Let
Prin = min{p(w, w') | (w,w') € Es}.

Pmin > 0, by definition of S.

Since S is strongly connected and n > 1, its diameter D satisfies
1 <D< n.

In every suffix s of w, the probability that v occurs among the first D
values of s is at least 0 < (pmin)D < 1. Indeed, there is an elementary
path of length at most D from any vertex to v in S.

So, the probability that v does not occur among the first k x D values of
w is at most (1 — (pmin)?).
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Proof of Theorem 1

Sufficient Condition

Let w be any random walk on G starting at vertex u under P. Let
Prin = min{p(w, w') | (w,w') € Es}.

Pmin > 0, by definition of S.

Since S is strongly connected and n > 1, its diameter D satisfies
1 <D< n.

In every suffix s of w, the probability that v occurs among the first D
values of s is at least 0 < (pmin)D < 1. Indeed, there is an elementary
path of length at most D from any vertex to v in S.

So, the probability that v does not occur among the first k x D values of
w is at most (1 — (pmin)?).

Now, limg o0 (1 — (pmin)P)* = 0 since 0 < 1 — (pmin)? < 1.

Hence, v has probability 1 of occurring in w. O
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© Complexity of the Standard Random Walk
@ Relevant Quantities
@ Tool: Markov Chains
o Hitting Time of the Standard Random Walk
@ Cover Time of the Standard Random Walk
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Roadmap

© Complexity of the Standard Random Walk
@ Relevant Quantities
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Relevant Quantities

Hitting Time: informally, the hitting time is the expected time to move to
a node v in a random walk

(from a routing point of view, it is the expected length of the
routing path)

Cover Time: informally, the cover time is the expected time to visit all
nodes in a random walk
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Given a random walk w = (wp,w1, . ..) starting at vertex u € V, the
hitting time Hg(P; u, v) from u to v under P is:

He(P; u,v) = Ep[inf{i > 1 | w; = v}]

i.e., the expectation of the smallest time where w reaches v after leaving u.

A. Cournier & S. Devismes (UPJV)
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Given a random walk w = (wp,w1, . ..) starting at vertex u € V, the
hitting time Hg(P; u, v) from u to v under P is:

He(P; u,v) = Ep[inf{i > 1 | w; = v}]

i.e., the expectation of the smallest time where w reaches v after leaving u.

Remark: Hg(P; u, u) is the expectation of the smallest time for w to leave
and then return to u!

The hitting time Hg(P) of G under P is:

Hg(P) = max Hg(P; u,v)

u,veV
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Given a random walk w = (wp,w1, . ..) starting at vertex u € V, the
hitting time Hg(P; u, v) from u to v under P is:

He(P; u,v) = Ep[inf{i > 1 | w; = v}]

i.e., the expectation of the smallest time where w reaches v after leaving u.

Remark: Hg(P; u, u) is the expectation of the smallest time for w to leave
and then return to u!

The hitting time Hg(P) of G under P is:

Hg(P) = max Hg(P; u,v)

u,veV

In the following, we will denote by # ¢ (u, v) the hitting time from u to v
in a standard random walk on G.
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Cover Time

Given a random walk w = (wp, w1, . ..) starting at vertex u € V/, the cover
time Cg(P; u) from u under P is:

Co(P; u) = Ep[inf{i > 1 | {wo,...,wi} = V}]

i.e., the expectation of the smallest time for w to visit all vertices starting
from wu.

The cover time Cg(P) of G under P is:

Cs(P) = max Ce(P; u)
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Roadmap

© Complexity of the Standard Random Walk

@ Tool: Markov Chains
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A Markov chain or Markov process is a stochastic model where the
probability of future (next) state only depends on the most recent
(current) state.

This memoryless property of a stochastic process is called Markov property.
From a probability perspective, the Markov property implies that the

conditional probability distribution of the future state (conditioned on both
past and current states) only depends on the current state.
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A Markov chain or Markov process is a stochastic model where the
probability of future (next) state only depends on the most recent
(current) state.

This memoryless property of a stochastic process is called Markov property.

From a probability perspective, the Markov property implies that the
conditional probability distribution of the future state (conditioned on both
past and current states) only depends on the current state.

A Markov chain is usually represented as a weighted digraph where nodes
are states and arcs are possible transitions weighted with their positive
probability of occurrence.
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A Markov chain or Markov process is a stochastic model where the
probability of future (next) state only depends on the most recent
(current) state.

This memoryless property of a stochastic process is called Markov property.

From a probability perspective, the Markov property implies that the
conditional probability distribution of the future state (conditioned on both
past and current states) only depends on the current state.

A Markov chain is usually represented as a weighted digraph where nodes
are states and arcs are possible transitions weighted with their positive
probability of occurrence.

A Markov chain in which every state can be reached from every other
state is called an irreducible Markov chain.
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A random walk on a graph as the Markov property: it can be
modeled by a finite Markov chain.

For example, the weighted digraph S in Theorem 1 is a Markov Chain.
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A random walk on a graph as the Markov property: it can be
modeled by a finite Markov chain.

For example, the weighted digraph S in Theorem 1 is a Markov Chain.

Below, we give the Markov chain corresponding to the standard random
walk on our sample graph.
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Stationary Distribution of a Markov Chain

The stationary distribution 7 = (7;);c¢ of a Markov chain gives the
fraction of the time spent in each state i of the state space E of this
Markov chain, asymptotically.

Let Sp(/) the time spent in state i after the first n steps.

T = lim S,,(I)

n—oo n
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Application of the theorem of Perron-Frobenius [5, 8]

Any finite irreducible Markov chain has a stationary distribution
m = (7)ice that is the unique solution of:

Q@ > icemi=1, and
@ Vj€E, Yicemipli,j) =m;
where p(i,j) are the transition probabilities of the Markov chain.

Intuition:
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Any finite irreducible Markov chain has a stationary distribution
m = (7)ice that is the unique solution of:

Q@ > icemi=1, and
@ Vj€E, Yicemipli,j) =m;
where p(i,j) are the transition probabilities of the Markov chain.

Intuition:
@ In a distribution, the sum of probabilities is equal to 1
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Application of the theorem of Perron-Frobenius [5, 8]

Any finite irreducible Markov chain has a stationary distribution
m = (7)ice that is the unique solution of:

Q@ > icemi=1, and
@ Vj€E, Yicemipli,j) =m;
where p(i,j) are the transition probabilities of the Markov chain.

Intuition:
@ In a distribution, the sum of probabilities is equal to 1
@ From i, j is reached in one step with probability p(/,j): it is the
fraction of time j is reached from i provided that the walk is in i
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Application of the theorem of Perron-Frobenius [5, 8]

Any finite irreducible Markov chain has a stationary distribution
m = (7)ice that is the unique solution of:

Q@ > icemi=1, and

Q@ VjcE Yicemip(i,j) =m;
where p(i,j) are the transition probabilities of the Markov chain.

Intuition:
@ In a distribution, the sum of probabilities is equal to 1
@ From i, j is reached in one step with probability p(/,j): it is the
fraction of time j is reached from i provided that the walk is in i
m; is the fraction of the time spent in i
So, mip(i,j) gives the fraction of time j is reached from i
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Application of the theorem of Perron-Frobenius [5, 8]

Any finite irreducible Markov chain has a stationary distribution
m = (7)ice that is the unique solution of:

Q@ > icemi=1, and
@ Vj€E, Yicemipli,j) =m;
where p(i,j) are the transition probabilities of the Markov chain.

Intuition:

@ In a distribution, the sum of probabilities is equal to 1

@ From i, j is reached in one step with probability p(/,j): it is the
fraction of time j is reached from i provided that the walk is in i
m; is the fraction of the time spent in i
So, mip(i,j) gives the fraction of time j is reached from i
Now, the fraction of the time spent in each state j, 7}, is the fraction
of time j is reached from all states of £
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Fundamental Result
from [6]

YueV, He(u,u) = 25—’“”

Intuition:
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Fundamental Result
from [6]

YueV, He(u,u) = 25—’“”

Intuition:

@ Since G has m edges, the Markov chain associated to the standard random
walk on G has 2m arcs
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Fundamental Result
from [6]

YueV, He(u,u) = 25—’“”

Intuition:

@ Since G has m edges, the Markov chain associated to the standard random
walk on G has 2m arcs

@ Since the random walk is standard, the traversing of any arc is
asymptotically equiprobable, i.e., the stationary probability of any arc is 5t

2m
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Fundamental Result
from [6]

YueV, He(u,u) = 25’:7

Intuition:

@ Since G has m edges, the Markov chain associated to the standard random
walk on G has 2m arcs

@ Since the random walk is standard, the traversing of any arc is

asymptotically equiprobable, i.e., the stationary probability of any arc is ﬁ

@ The stationary probability of a node u, 7, is the sum of the stationary
probability of its incoming arcs
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Fundamental Result
from [6]

YueV, He(u,u) = 25—’“”

Intuition:

Since G has m edges, the Markov chain associated to the standard random
walk on G has 2m arcs

Since the random walk is standard, the traversing of any arc is
1

asymptotically equiprobable, i.e., the stationary probability of any arc is 5

The stationary probability of a node u, m,, is the sum of the stationary
probability of its incoming arcs

Since a node u has J,, incoming arcs in the Markov chain, we have 7, = 2"7‘;7
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Fundamental Result
from [6]

YueV, He(u,u) = 25—’“”

Intuition:

@ Since G has m edges, the Markov chain associated to the standard random
walk on G has 2m arcs

@ Since the random walk is standard, the traversing of any arc is
asymptotically equiprobable, i.e., the stationary probability of any arc is 5%

2m
@ The stationary probability of a node u, 7, is the sum of the stationary
probability of its incoming arcs
@ Since a node u has §, incoming arcs in the Markov chain, we have 7, = 2"7‘;7

@ Since m, is the fraction of the time spent in vertex u during the walk, we
have He(u,u) = L, ie, He(u, u) = 27
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Proof of Lemma 4 (1/2)

Consider an arbitrary standard random walk w on G. Let m = (7,),ecv be the stationary
distribution of Markov chain that models w.
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Proof of Lemma 4 (1/2)

Consider an arbitrary standard random walk w on G. Let m = (7,),ecv be the stationary
distribution of Markov chain that models w.

He(u,u) = .

Ty

Thus, the lemma holds if 7, = 2”—;’"
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Proof of Lemma 4 (1/2)

Consider an arbitrary standard random walk w on G. Let m = (7,),ecv be the stationary
distribution of Markov chain that models w.

He(u,u) = .

Ty
u
2m”

V is a finite set. G is connected and at each node, the probability of traversing each
incident edge is strictly positive. So, the Markov chain modeling w is finite and
irreducible. Hence, Corollary 3 applies: Yu € V, 7, := 5—; should be the solution of

2
° Zueku =1, and
e VwveV, ) cvmup(u,v)=m,

where p(u,v) = 3= if u and v are neighbors, 0 otherwise.

Thus, the lemma holds if 7, =
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Consider an arbitrary standard random walk w on G. Let m = (7,),ecv be the stationary
distribution of Markov chain that models w.

He(u,u) = .

Ty
u
2m”

V is a finite set. G is connected and at each node, the probability of traversing each
incident edge is strictly positive. So, the Markov chain modeling w is finite and
irreducible. Hence, Corollary 3 applies: Yu € V, 7, := g—; should be the solution of

° Zueku =1, and
e VwveV, ) cvmup(u,v)=m,

where p(u,v) = 3= if u and v are neighbors, 0 otherwise.

5u
IR SR

ueV ueV

Thus, the lemma holds if 7, =
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Proof of Lemma 4 (1/2)

Consider an arbitrary standard random walk w on G. Let m = (7,),ecv be the stationary
distribution of Markov chain that models w.

He(u,u) = .

Ty
u
2m”

V is a finite set. G is connected and at each node, the probability of traversing each
incident edge is strictly positive. So, the Markov chain modeling w is finite and
irreducible. Hence, Corollary 3 applies: Yu € V, 7, := g—; should be the solution of

° Zueku =1, and
e VwveV, ) cvmup(u,v)=m,

where p(u,v) = 3= if u and v are neighbors, 0 otherwise.

Thus, the lemma holds if 7, =
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Proof of Lemma 4 (1/2)

Consider an arbitrary standard random walk w on G. Let m = (7,),ecv be the stationary
distribution of Markov chain that models w.

He(u,u) = .

Ty
u
2m”

V is a finite set. G is connected and at each node, the probability of traversing each
incident edge is strictly positive. So, the Markov chain modeling w is finite and
irreducible. Hence, Corollary 3 applies: Yu € V, 7, := 5—; should be the solution of

2
° Zueku =1, and
e VwveV, ) cvmup(u,v)=m,

where p(u,v) = 3= if u and v are neighbors, 0 otherwise.

Thus, the lemma holds if 7, =

= =1 (handshaking lemma, [2])
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Proof of Lemma 4 (2/2)

Let ve V.

Z mup(u,v) = Z Tu standard random walk
uev ueN(v) Y
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Proof of Lemma 4 (2/2)

Let ve V.

ZWUP(U,V): Z uC

dy
ueV ueN(v)

-y 2

0u2m
ueN(v)
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Proof of Lemma 4 (2/2)

Let ve V.

Zwup u,v)

ueV

standard random walk
U

Z
eN(v

Oy
Z o " om
eN(v
- 2
eN(v

L
,2m
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Proof of Lemma 4 (2/2)

Let ve V.

Z mup(u,v) = Z ? standard random walk
uev ueN(v) Y

Thus, Vu e V, 7, = 25;;7 is the solution! O
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© Complexity of the Standard Random Walk

o Hitting Time of the Standard Random Walk
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Bounds

In [1], the hitting time of the standard random walk is shown to be in

@(n3)
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In [1], the hitting time of the standard random walk is shown to be in

@(n3)

Let us now study the worst case
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Basic properties

Let p1,..., pn the vertices of V.

Assume G has a pending line L = pj,...,p, with i > 1: Vj € {i,...,n—1},6p =2,
dp, = 1, and the subgraph G(L) induced by L is a line. Let p;_1 the neighbor of p; such
that Pi—1 ¢ L.

Assume a random walk starting from p;
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Basic properties

Let p1,..., pn the vertices of V.

Assume G has a pending line L = pj,...,p, with i > 1: Vj € {i,...,n—1},6p =2,
dp, = 1, and the subgraph G(L) induced by L is a line. Let p;_1 the neighbor of p; such
that Pi—1 ¢ L.

Assume a random walk starting from p;

@ A walk that leaves and returns to p, necessarily first goes to p,—1, so
He(pn, Pn) = He(pn, Pa-1) + He(pPa-1, pn) = 1 + He(pn—1, pn), SO
He(Po—1, Pn) = He(pny pa) — 1 = 2m — 1, by Lemma 4
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Let p1,..., pn the vertices of V.

Assume G has a pending line L = pj,...,p, with i > 1: Vj € {i,...,n—1},6p =2,
dp, = 1, and the subgraph G(L) induced by L is a line. Let p;_1 the neighbor of p; such
that Pi—1 ¢ L.

Assume a random walk starting from p;

@ A walk that leaves and returns to p, necessarily first goes to p,—1, so
He(pn, Pn) = He(pn, Pa-1) + He(pPa-1, pn) = 1 + He(pn—1, pn), SO
He(Po—1, Pn) = He(pny pa) — 1 = 2m — 1, by Lemma 4

Q Ve {i,....,n}, Helpr, pj) = Ho(pr, pji-1) + He(pj-1, pj): a walk from p; to p;
necessarily go via pj_1
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Let p1,..., pn the vertices of V.

Assume G has a pending line L = pj,...,p, with i > 1: Vj € {i,...,n—1},6p =2,
dp, = 1, and the subgraph G(L) induced by L is a line. Let p;_1 the neighbor of p; such
that Pi—1 ¢ L.

Assume a random walk starting from p;

@ A walk that leaves and returns to p, necessarily first goes to p,—1, so
He(pn, Pn) = He(pn, Pa-1) + He(pPa-1, pn) = 1 + He(pn—1, pn), SO
He(Po—1, Pn) = He(pny pa) — 1 = 2m — 1, by Lemma 4

Q Vje{i,....n}, He(pr, pj) = He(p1, pi-1) + He(pi-1, pj): a walk from p; to p;
necessarily go via pj_1

© Vi {i,....,n}, He(pi-1,p) = P\ (pjsr.....pn}) (Pi—1, pj): @ walk from p;_; hits
p; before any vertex in pj11,..., pn.
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Basic properties

Let p1,..., pn the vertices of V.

Assume G has a pending line L = pj,...,p, with i > 1: Vj € {i,...,n—1},6p =2,
dp, = 1, and the subgraph G(L) induced by L is a line. Let p;_1 the neighbor of p; such
that Pi—1 ¢ L.

Assume a random walk starting from p;

@ A walk that leaves and returns to p, necessarily first goes to p,—1, so
He(pn, pn) = He(Pns pr—1) + He(pa—1, Pn) = 1 + He(pn—1, pn), SO
He(Po1.pa) = Ho(papr) — 1 = 2m — 1, by Lemma 4

Q Vje{i,....n}, He(pr, pj) = He(p1, pi-1) + He(pi-1, pj): a walk from p; to p;
necessarily go via pj_1

O Vied{i,....n}, Helpi1,p) = Pe(v\ippir.pn) (Pi-1: pj): @ walk from p; 1 hits
p; before any vertex in pj11,..., pn.

Q Ve {i,....n}, Ho(pj-1,P) = Po(\{pjsr...on)(Pi-1,P7) = 2(m = (n = j)) = 1 =
2m — (2n — 2j + 1) by Property 1
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First attempt: a line L

L:pp—pp— ... — ppwithn>1
L is p1 linked to a pending line p, ..., pn so previous properties apply with i = 2.
He(p1,pn) =
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First attempt: a line L

L:pp—pp— ... — ppwithn>1
L is pp linked to a pending line p2, ..., pn so previous properties apply with i = 2.
6(p1, pn) Zﬂc(pj 1,Pj) by Property 2
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First attempt: a line L

L:pp—pp— ... — ppwithn>1
L is pp linked to a pending line p2, ..., pn so previous properties apply with i = 2.
c(p1, pn) Zﬂc(pj 1,P)) by Property 2
- Z(2m —(2n—2j+1)) by Property 4
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First attempt: a line L

L:pp—pp— ... — ppwithn>1
L is pp linked to a pending line p2, ..., pn so previous properties apply with i = 2.
6(p1, pn) Zﬂc(pj 1,Pj) by Property 2
- Z(2m —(2n—2j+1)) by Property 4
:Z(Zn—2—(2n—2j+1)) m=n—1
j=2

A. Cournier & S. Devismes (UPJV) Routing using Local Information January 13, 2026 33/49



First attempt: a line L

L:pp—pp— ... — ppwithn>1
L is pp linked to a pending line p2, ..., pn so previous properties apply with i = 2.
6(p1, pn) Zﬂc(pj 1,Pj) by Property 2
- Z(2m —(2n—2j+1)) by Property 4
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=Y @i-3)
j=2
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First attempt: a line L

L:pp—pp— ... — ppwithn>1
L is pp linked to a pending line p2, ..., pn so previous properties apply with i = 2.
6(p1, pn) Zﬂc(pj 1,Pj) by Property 2
- Z(2m —(2n—2j+1)) by Property 4
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j=2

=Y @i-3)
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n n
:373n+z2j:373n+22j (n—1).—3=3—3n
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First attempt: a line L

L:pp—pp— ... — ppwithn>1
L is pp linked to a pending line p2, ..., pn so previous properties apply with i = 2.
6(p1, pn) Zﬂc(pj 1,Pj) by Property 2
- Z(2m —(2n—2j+1)) by Property 4
:Z(Zn—2—(2n—2j+1)) m=n—1
j=2

=Y @i-3)
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n n
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First attempt: a line L

L:pp—pp— ... — ppwithn>1
L is pp linked to a pending line p2, ..., pn so previous properties apply with i = 2.
6(p1, pn) Zﬂc(pj 1,Pj) by Property 2
- Z(2m —(2n—2j+1)) by Property 4
:Z(Zn—2—(2n—2j+1)) m=n—1
j=2

=Y @i-3)
j=2

n n
:373n+z2j:373n+22j (n—1).—3=3—3n

(n+2)(n—1)
2
=n’—2n+1€0(n)

=3—-3n+2
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Second attempt: Lollipop

A lollipop consists of a clique linked by a bridge to a line

Let us consider a lollipop made of vertices p1, ..., pn with n > 2 where

p1, pi—1 is the clique with i > 2 and a standard random walk starting from
P1
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Analysis (1/3)

Until reaching p;_1, the probability of hitting p;_1 at the next step is —5:

i—2
it is a geometric law. Thus,

He(pr, pi-1) =i —2

We now compute H¢(p1, pn)
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Analysis (

HG(PI; pn) -
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Analysis (2/3)

He(p1, pn) = He(pr, pic1) + Y Ha(pj-1.pj) by Property 2
=i
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Analysis (2/3)

He(p1, pn) = He(pr, pic1) + Y Ha(pj-1.pj) by Property 2
=i
=i-24+> He(pji-1.p))
=i
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Analysis (2/3)

n
He(p1, pn) = He(pr, pic1) + Y Ha(pj-1.pj) by Property 2
=i
n
=i—-2+ ZHG(PJ—L p;)
=i
n
=i—2+ Z(Qm —(2n—-2j+1)) by Property 4
=i
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Analysis (2/3)

n
He(p1, pn) = He(pr, pic1) + Y Ha(pj-1.pj) by Property 2
=i
n
=i—-2+ ZHG(PJ—L p;)
=i
n
=i—2+ Z(Qm —(2n—-2j+1)) by Property 4
=i

n
=i-24(n—i+1).2m—-2n-1)+2) j

j=i
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Analysis (2/3)

n
He(p1, pn) = He(pr, pic1) + Y Ha(pj-1.pj) by Property 2
=i
n
=i—-2+ ZHG(PJ—L p;)
=i
n
=i—2+ Z(Qm —(2n—-2j+1)) by Property 4
=i

n
=i-24(n—i+1).2m—-2n-1)+2) j

j=i
=i—2+(n—i+1).2m—n+i—-1)
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Analysis (2/3)

n
He(p1, pn) = He(pr, pic1) + Y Ha(pj-1.pj) by Property 2
=i
n
=i—-2+ ZHG(PJ—L pj)
=i
n
=i—2+ Z(2m —(2n—-2j+1)) by Property 4
=i

n
=i-24(n—i+1).2m—-2n-1)+2) j

j=i
=i—2+(n—i+1).2m—n+i—-1)
=i—2+(n—i+1).(—4i+n+3)
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Analysis (3/3)

[ . n
Let /i := Z-

3
£—2+( "+1)(
3 n? 10n
—H+T6+T+1€@( )

He(p1, pn) = +3)

16

Actually, the lollipop graph is shown to be the worst case in [6]: precisely
the lollipops with a clique of % vertices
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© Complexity of the Standard Random Walk

@ Cover Time of the Standard Random Walk
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From [4, 3], we know that the cover time of the standard random walk is
also in ©(n?).

Again, the worst-case graph is the lollipop with a clique of 23—” vertices!
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Interest of a bounded cover time

Simple Monte-Carlo Broadcast Algorithm

Let C > CG(P).
Assume u has a data d to broadcast.

Initialization
deliver d
pick i € {1,...,0,} according to P,
send (d, 1) via port number |

v receives (d, i)
deliver d
if i < C then
pick i € {1,...,4,} according to P,
send (d, i+ 1) via port number i
end if

Termination in C hops and partial correctness w.h.p. (works in anonymous
networks; yet, duplicates . . .).
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Roadmap

@ Optimal (Pure) Random Walk
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What is the issue with the standard random walk?
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What is the issue with the standard random walk?

Lemma 4 claims that the more the degree of a node is the more often
it is visited!

It is an issue!

Indeed
@ In the lollipop, we have both very high degree nodes and very low
degree nodes: the hitting time is in ©(n®)
@ In a line, degrees are almost equal (either 1 or 2): the hitting time is
in ©(n?) although the diameter is maximal!
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What is the issue with the standard random walk?

Lemma 4 claims that the more the degree of a node is the more often
it is visited!

It is an issue!

Indeed

@ In the lollipop, we have both very high degree nodes and very low
degree nodes: the hitting time is in ©(n®)

@ In a line, degrees are almost equal (either 1 or 2): the hitting time is
in ©(n?) although the diameter is maximal!

Solution: load balance the probability distributions
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Probability Distributions proposed in [7]

—1/2
p(u7 V) = weN(u)
0 otherwise

A minor drawback is that each node should
know the degree of its neighbors

(but, it is still local information)
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Markov chain of the random walk given in

5172 [7] on a lollipop
p(u7 V) = weN(u)
0 otherwise

A minor drawback is that each node should
know the degree of its neighbors

(but, it is still local information)

A. Cournier & S. Devismes (UPJV) Routing using Local Information January 13, 2026 43 /49



Probability Distributions proposed in [7]

Markov chain of the random walk given in

5172 [7] on a lollipop
p(u7 V) = weN(u)
0 otherwise

A minor drawback is that each node should
know the degree of its neighbors Markov chain of the standard random walk

(but, it is still local information) on the same graph
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Hitting Time: ©(n?)

It is the optimal distribution for the pure random walk

Cover Time: O(n?log n)
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A few more details

The lower bound is natural: in a line, only two vertices (p2 and p,—1) have distributions
that differ from the standard random walk

4w/1 00 172 59/1 00
v

59/100 172 41/1 00
Markov chain of the random walk given in [7] on a line
1 12 12 12 5 12 12
—" R N N R~
12 A 12 12 172 7

Markov chain of the standard random walk on a line
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A few more details

The lower bound is natural: in a line, only two vertices (p2 and p,—1) have distributions
that differ from the standard random walk

4w/1 00 172 59/1 00
v
172

59/100 41/1 00
Markov chain of the random walk given in [7] on a line
1 12 12 12 5 12 12
—" R N N R~
12 A 12 12 172 7

Markov chain of the standard random walk on a line

Intuition: With an arbitrary large line, the difference between the standard random walk
and the one of [7] becomes negligible, thus we have Q(n?).
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A few more details

The lower bound is natural: in a line, only two vertices (p2 and p,—1) have distributions
that differ from the standard random walk

4w/1 00 172 59/1 00
v
172

59/100 41/1 00

Markov chain of the random walk given in [7] on a line

1 12 12 12 5 12 12
12
1/2 12 1

12 12

Markov chain of the standard random walk on a line

Intuition: With an arbitrary large line, the difference between the standard random walk
and the one of [7] becomes negligible, thus we have Q(n?).

Proof: Assume G is a line py — ... — p, with n > 1. Let $H¢(p;, p;) be the hitting time
from p; to p; under the transition probability matrix of the random walk of [7].

ﬁG(Pl,Pn) > YJG(Pthfl) > HG(phpnfl) € Q(nz)

(n.b., H¢(p1, pn—1) > He(p1, pa—1) since % < %) O
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A few more details

The lower bound is natural: in a line, only two vertices (p2 and p,—1) have distributions
that differ from the standard random walk

4w/1 00 172 59/1 00
v

59100 172 41/1 00

Markov chain of the random walk given in [7] on a line

1 12 12 12 5 12 12
12
1/2 12 1

12 12

Markov chain of the standard random walk on a line

Intuition: With an arbitrary large line, the difference between the standard random walk
and the one of [7] becomes negligible, thus we have Q(n?).

Proof: Assume G is a line py — ... — p, with n > 1. Let $H¢(p;, p;) be the hitting time
from p; to p; under the transition probability matrix of the random walk of [7].

ﬁG(Pl,Pn) > YJG(Pthfl) > HG(phpnfl) € Q(nz)
(n.b., H¢(p1, pn—1) > He(p1, pa—1) since % < %) O

The upper bound is more complex! (see [7])
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© Conclusion
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Pros and Cons of Random-walk-based Routing

Pros. Cons.
o Partially Correct @ Termination almost sure only
@ Robust
. o Slow: Q(n?

o Adaptive (%)

o Fair In many large-scale networks, the

° I\/Iessages: low message diameter is logarithmic in n, e.g., IPv6,
overhead and no control which allows for up to 2128 machines,
message assumes the diameter is at most 255!

@ Low memory at each process e Not FIFO
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