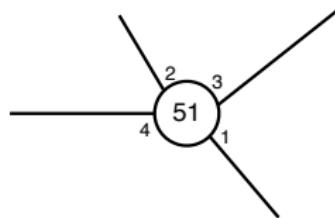
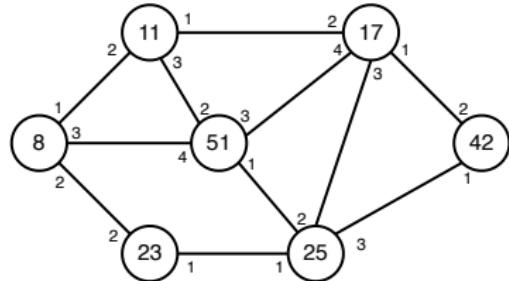


How to route a packet from 51 to 42?

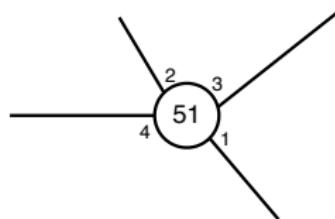
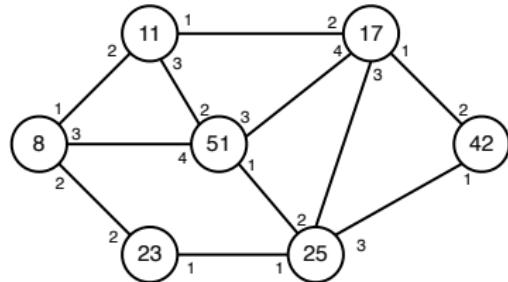
Using Local Information Only . . .



- The process identifier
- Port numbers of incident channels

How to route a packet from 51 to 42?

Using Local Information Only . . .



- The process identifier
- Port numbers of incident channels

In an arbitrary connected bidirectional network, without any further information:

only **randomization** can help!

Random Algorithms

Deterministic Algorithm (no randomization)

- Partially Correct
- Terminate

- Partially Correct
- Terminate

Monte Carlo

- Partially Correct *w.h.p.*
- Terminate

Las Vegas

- Partially Correct
- Terminate *w.p.p.*

Atlantic City

- Partially Correct *w.h.p.*
- Terminate *w.p.p.*

w.p.p. = with (strictly) positive probability

w.h.p. = with high probability, *i.e.*, the probability depends on a parameter x such that the probability converges to 1 when x goes to the infinite (*w.h.p.* \Rightarrow *w.p.p.*)

Remark: the **Quicksort** algorithm where the pivot is randomly chosen is a **Sherwood algorithm**.

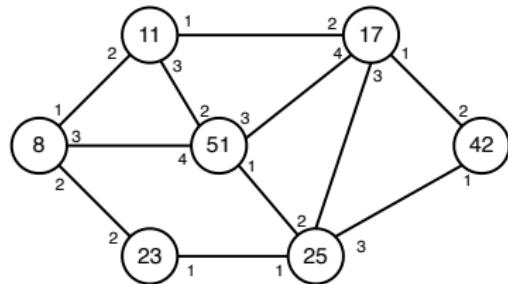
Random Local Algorithm (Las Vegas Algorithm)

Given a packet p with destination label d at node u .

```
if  $d = u$  then
    deliver  $p$ 
else
    pick  $i \in \{1, \dots, \delta_u\}$  according to  $P_u$ 
    send  $p$  via port number  $i$ 
end if
```

P_u is a **probability distribution**:

- $\forall i \in \{1, \dots, \delta_u\}$, $P_u(i)$ gives the probability of picking i
- $P_u : \{1, \dots, \delta_u\} \rightarrow [0, 1]$ such that $\sum_{i \in \{1, \dots, \delta_u\}} P_u(i) = 1$



Random Local Algorithm (Las Vegas Algorithm)

Given a packet p with destination label d at node u .

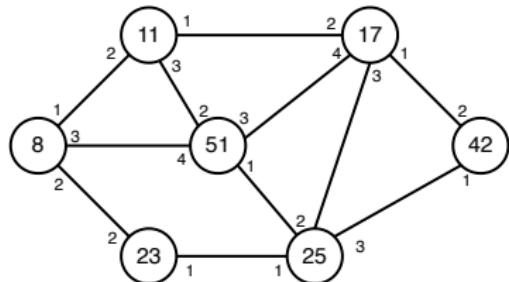
```
if  $d = u$  then
    deliver  $p$ 
else
    pick  $i \in \{1, \dots, \delta_u\}$  according to  $P_u$ 
    send  $p$  via port number  $i$ 
end if
```

P_u is a **probability distribution**:

- $\forall i \in \{1, \dots, \delta_u\}$, $P_u(i)$ gives the probability of picking i
- $P_u : \{1, \dots, \delta_u\} \rightarrow [0, 1]$ such that $\sum_{i \in \{1, \dots, \delta_u\}} P_u(i) = 1$
- For example, P_u may be a **uniform** distribution:

$$\forall i \in \{1, \dots, \delta_u\}, P_u(i) = \frac{1}{\delta_u}$$

E.g., $P_8(1) = P_8(2) = P_8(3) = \frac{1}{3}$



Random Local Algorithm (Las Vegas Algorithm)

Given a packet p with destination label d at node u .

```
if  $d = u$  then
    deliver  $p$ 
else
    pick  $i \in \{1, \dots, \delta_u\}$  according to  $P_u$ 
    send  $p$  via port number  $i$ 
end if
```

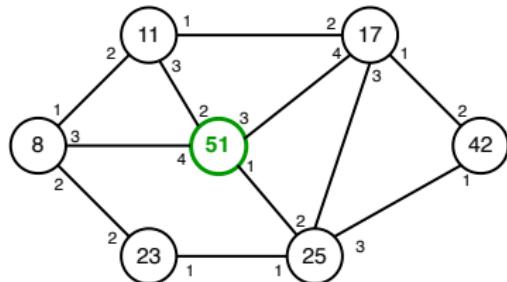
P_u is a **probability distribution**:

- $\forall i \in \{1, \dots, \delta_u\}$, $P_u(i)$ gives the probability of picking i
- $P_u : \{1, \dots, \delta_u\} \rightarrow [0, 1]$ such that $\sum_{i \in \{1, \dots, \delta_u\}} P_u(i) = 1$
- For example, P_u may be a **uniform** distribution:

$$\forall i \in \{1, \dots, \delta_u\}, P_u(i) = \frac{1}{\delta_u}$$

E.g., $P_8(1) = P_8(2) = P_8(3) = \frac{1}{3}$

Routing from 51 to 42
(e.g., using uniform distribution)



Routing path: 51

Random Local Algorithm (Las Vegas Algorithm)

Given a packet p with destination label d at node u .

```
if  $d = u$  then
    deliver  $p$ 
else
    pick  $i \in \{1, \dots, \delta_u\}$  according to  $P_u$ 
    send  $p$  via port number  $i$ 
end if
```

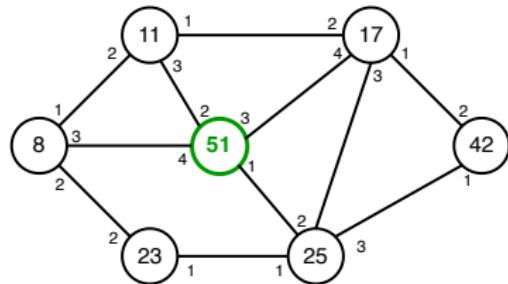
P_u is a **probability distribution**:

- $\forall i \in \{1, \dots, \delta_u\}$, $P_u(i)$ gives the probability of picking i
- $P_u : \{1, \dots, \delta_u\} \rightarrow [0, 1]$ such that $\sum_{i \in \{1, \dots, \delta_u\}} P_u(i) = 1$
- For example, P_u may be a **uniform** distribution:

$$\forall i \in \{1, \dots, \delta_u\}, P_u(i) = \frac{1}{\delta_u}$$

E.g., $P_8(1) = P_8(2) = P_8(3) = \frac{1}{3}$

Routing from 51 to 42
(e.g., using uniform distribution)



Routing path: 51
Pick 3

Random Local Algorithm (Las Vegas Algorithm)

Given a packet p with destination label d at node u .

```
if  $d = u$  then
    deliver  $p$ 
else
    pick  $i \in \{1, \dots, \delta_u\}$  according to  $P_u$ 
    send  $p$  via port number  $i$ 
end if
```

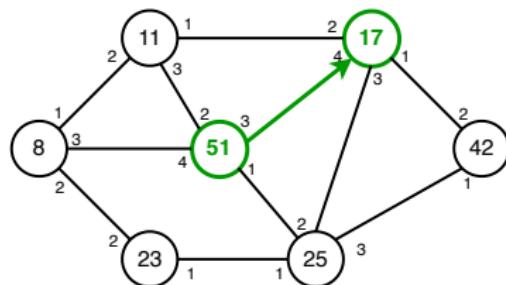
P_u is a **probability distribution**:

- $\forall i \in \{1, \dots, \delta_u\}$, $P_u(i)$ gives the probability of picking i
- $P_u : \{1, \dots, \delta_u\} \rightarrow [0, 1]$ such that $\sum_{i \in \{1, \dots, \delta_u\}} P_u(i) = 1$
- For example, P_u may be a **uniform** distribution:

$$\forall i \in \{1, \dots, \delta_u\}, P_u(i) = \frac{1}{\delta_u}$$

E.g., $P_8(1) = P_8(2) = P_8(3) = \frac{1}{3}$

Routing from 51 to 42
(e.g., using uniform distribution)



Routing path: 51,17

Random Local Algorithm (Las Vegas Algorithm)

Given a packet p with destination label d at node u .

```
if  $d = u$  then
    deliver  $p$ 
else
    pick  $i \in \{1, \dots, \delta_u\}$  according to  $P_u$ 
    send  $p$  via port number  $i$ 
end if
```

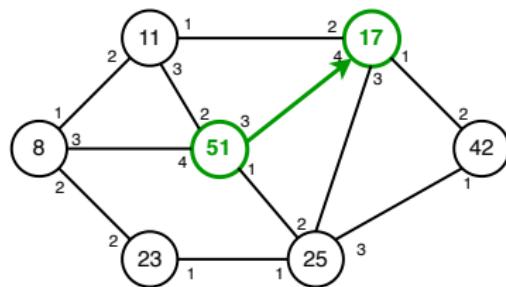
P_u is a **probability distribution**:

- $\forall i \in \{1, \dots, \delta_u\}$, $P_u(i)$ gives the probability of picking i
- $P_u : \{1, \dots, \delta_u\} \rightarrow [0, 1]$ such that $\sum_{i \in \{1, \dots, \delta_u\}} P_u(i) = 1$
- For example, P_u may be a **uniform** distribution:

$$\forall i \in \{1, \dots, \delta_u\}, P_u(i) = \frac{1}{\delta_u}$$

E.g., $P_8(1) = P_8(2) = P_8(3) = \frac{1}{3}$

Routing from 51 to 42
(e.g., using uniform distribution)



Routing path: 51,17
Pick 2

Random Local Algorithm (Las Vegas Algorithm)

Given a packet p with destination label d at node u .

```
if  $d = u$  then
    deliver  $p$ 
else
    pick  $i \in \{1, \dots, \delta_u\}$  according to  $P_u$ 
    send  $p$  via port number  $i$ 
end if
```

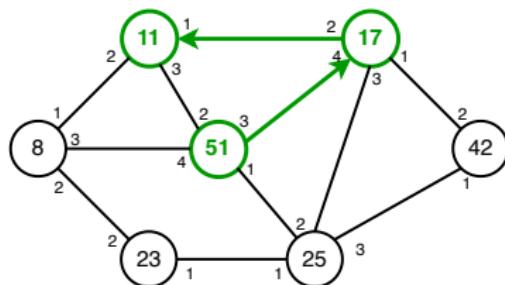
P_u is a **probability distribution**:

- $\forall i \in \{1, \dots, \delta_u\}$, $P_u(i)$ gives the probability of picking i
- $P_u : \{1, \dots, \delta_u\} \rightarrow [0, 1]$ such that $\sum_{i \in \{1, \dots, \delta_u\}} P_u(i) = 1$
- For example, P_u may be a **uniform** distribution:

$$\forall i \in \{1, \dots, \delta_u\}, P_u(i) = \frac{1}{\delta_u}$$

E.g., $P_8(1) = P_8(2) = P_8(3) = \frac{1}{3}$

Routing from 51 to 42
(e.g., using uniform distribution)



Routing path: 51,17,11

Random Local Algorithm (Las Vegas Algorithm)

Given a packet p with destination label d at node u .

```
if  $d = u$  then
    deliver  $p$ 
else
    pick  $i \in \{1, \dots, \delta_u\}$  according to  $P_u$ 
    send  $p$  via port number  $i$ 
end if
```

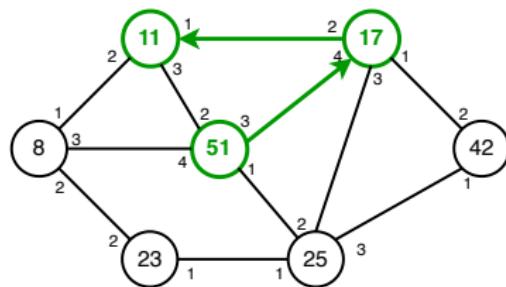
P_u is a **probability distribution**:

- $\forall i \in \{1, \dots, \delta_u\}$, $P_u(i)$ gives the probability of picking i
- $P_u : \{1, \dots, \delta_u\} \rightarrow [0, 1]$ such that $\sum_{i \in \{1, \dots, \delta_u\}} P_u(i) = 1$
- For example, P_u may be a **uniform** distribution:

$$\forall i \in \{1, \dots, \delta_u\}, P_u(i) = \frac{1}{\delta_u}$$

E.g., $P_8(1) = P_8(2) = P_8(3) = \frac{1}{3}$

Routing from 51 to 42
(e.g., using uniform distribution)



Routing path: 51,17,11
Pick 3

Random Local Algorithm (Las Vegas Algorithm)

Given a packet p with destination label d at node u .

```
if  $d = u$  then
    deliver  $p$ 
else
    pick  $i \in \{1, \dots, \delta_u\}$  according to  $P_u$ 
    send  $p$  via port number  $i$ 
end if
```

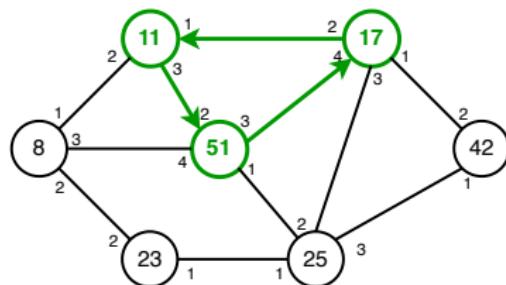
P_u is a **probability distribution**:

- $\forall i \in \{1, \dots, \delta_u\}$, $P_u(i)$ gives the probability of picking i
- $P_u : \{1, \dots, \delta_u\} \rightarrow [0, 1]$ such that $\sum_{i \in \{1, \dots, \delta_u\}} P_u(i) = 1$
- For example, P_u may be a **uniform** distribution:

$$\forall i \in \{1, \dots, \delta_u\}, P_u(i) = \frac{1}{\delta_u}$$

E.g., $P_8(1) = P_8(2) = P_8(3) = \frac{1}{3}$

Routing from 51 to 42
(e.g., using uniform distribution)



Routing path: 51,17,11,51

Random Local Algorithm (Las Vegas Algorithm)

Given a packet p with destination label d at node u .

```
if  $d = u$  then
    deliver  $p$ 
else
    pick  $i \in \{1, \dots, \delta_u\}$  according to  $P_u$ 
    send  $p$  via port number  $i$ 
end if
```

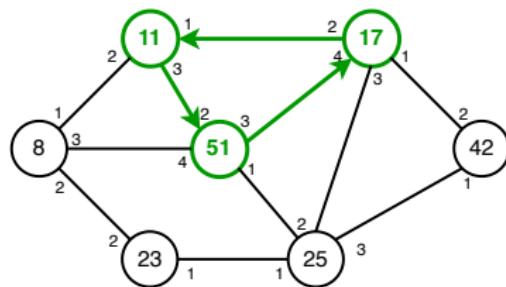
P_u is a **probability distribution**:

- $\forall i \in \{1, \dots, \delta_u\}$, $P_u(i)$ gives the probability of picking i
- $P_u : \{1, \dots, \delta_u\} \rightarrow [0, 1]$ such that $\sum_{i \in \{1, \dots, \delta_u\}} P_u(i) = 1$
- For example, P_u may be a **uniform** distribution:

$$\forall i \in \{1, \dots, \delta_u\}, P_u(i) = \frac{1}{\delta_u}$$

E.g., $P_8(1) = P_8(2) = P_8(3) = \frac{1}{3}$

Routing from 51 to 42
(e.g., using uniform distribution)



Routing path: 51, 17, 11, 51
Pick 1

Random Local Algorithm (Las Vegas Algorithm)

Given a packet p with destination label d at node u .

```
if  $d = u$  then
    deliver  $p$ 
else
    pick  $i \in \{1, \dots, \delta_u\}$  according to  $P_u$ 
    send  $p$  via port number  $i$ 
end if
```

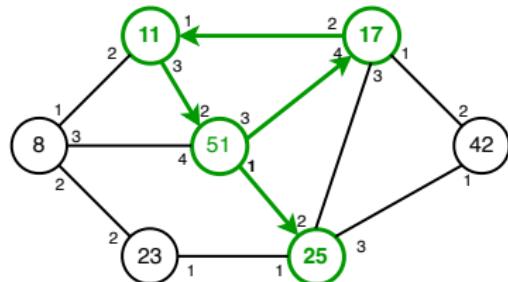
P_u is a **probability distribution**:

- $\forall i \in \{1, \dots, \delta_u\}$, $P_u(i)$ gives the probability of picking i
- $P_u : \{1, \dots, \delta_u\} \rightarrow [0, 1]$ such that $\sum_{i \in \{1, \dots, \delta_u\}} P_u(i) = 1$
- For example, P_u may be a **uniform** distribution:

$$\forall i \in \{1, \dots, \delta_u\}, P_u(i) = \frac{1}{\delta_u}$$

E.g., $P_8(1) = P_8(2) = P_8(3) = \frac{1}{3}$

Routing from 51 to 42
(e.g., using uniform distribution)



Routing path: 51,17,11,51,25

Random Local Algorithm (Las Vegas Algorithm)

Given a packet p with destination label d at node u .

```
if  $d = u$  then
    deliver  $p$ 
else
    pick  $i \in \{1, \dots, \delta_u\}$  according to  $P_u$ 
    send  $p$  via port number  $i$ 
end if
```

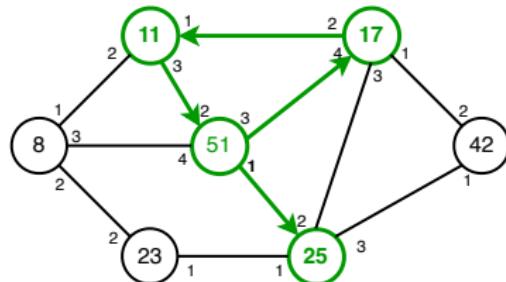
P_u is a **probability distribution**:

- $\forall i \in \{1, \dots, \delta_u\}$, $P_u(i)$ gives the probability of picking i
- $P_u : \{1, \dots, \delta_u\} \rightarrow [0, 1]$ such that $\sum_{i \in \{1, \dots, \delta_u\}} P_u(i) = 1$
- For example, P_u may be a **uniform** distribution:

$$\forall i \in \{1, \dots, \delta_u\}, P_u(i) = \frac{1}{\delta_u}$$

E.g., $P_8(1) = P_8(2) = P_8(3) = \frac{1}{3}$

Routing from 51 to 42
(e.g., using uniform distribution)



Routing path: 51, 17, 11, 51, 25
Pick 3

Random Local Algorithm (Las Vegas Algorithm)

Given a packet p with destination label d at node u .

```
if  $d = u$  then
    deliver  $p$ 
else
    pick  $i \in \{1, \dots, \delta_u\}$  according to  $P_u$ 
    send  $p$  via port number  $i$ 
end if
```

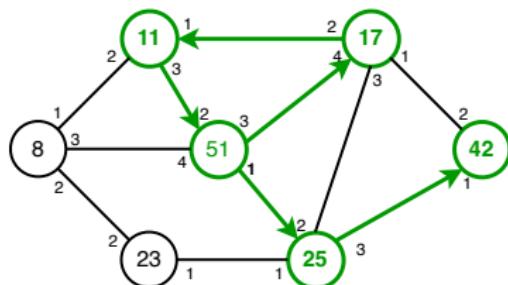
P_u is a **probability distribution**:

- $\forall i \in \{1, \dots, \delta_u\}$, $P_u(i)$ gives the probability of picking i
- $P_u : \{1, \dots, \delta_u\} \rightarrow [0, 1]$ such that $\sum_{i \in \{1, \dots, \delta_u\}} P_u(i) = 1$
- For example, P_u may be a **uniform** distribution:

$$\forall i \in \{1, \dots, \delta_u\}, P_u(i) = \frac{1}{\delta_u}$$

E.g., $P_8(1) = P_8(2) = P_8(3) = \frac{1}{3}$

Routing from 51 to 42
(e.g., using uniform distribution)



Routing path: 51, 17, 11, 51, 25, 42

Random Local Algorithm (Las Vegas Algorithm)

Given a packet p with destination label d at node u .

```
if  $d = u$  then
    deliver  $p$ 
else
    pick  $i \in \{1, \dots, \delta_u\}$  according to  $P_u$ 
    send  $p$  via port number  $i$ 
end if
```

P_u is a **probability distribution**:

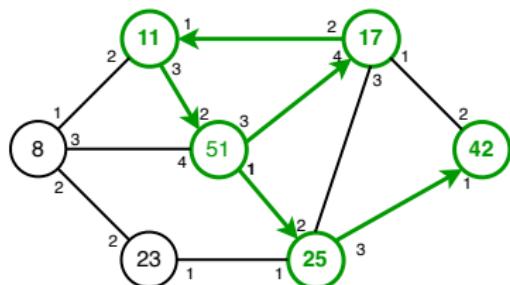
- $\forall i \in \{1, \dots, \delta_u\}$, $P_u(i)$ gives the probability of picking i
- $P_u : \{1, \dots, \delta_u\} \rightarrow [0, 1]$ such that $\sum_{i \in \{1, \dots, \delta_u\}} P_u(i) = 1$
- For example, P_u may be a **uniform** distribution:

$$\forall i \in \{1, \dots, \delta_u\}, P_u(i) = \frac{1}{\delta_u}$$

E.g., $P_8(1) = P_8(2) = P_8(3) = \frac{1}{3}$

- Formally, $51, 17, 11, 51, 25, 42$ = prefix of a **(standard) random walk**

Routing from 51 to 42
(e.g., using uniform distribution)



Routing path: 51, 17, 11, 51, 25, 42

Routing using Local Information: Random Walks (also called *Drunkard's Walks*)

Réseaux & Communication

Alain Cournier Stéphane Devismes

Université de Picardie Jules Verne

January 13, 2026

Roadmap

- 1 Introduction
- 2 Correctness
- 3 Complexity of the Standard Random Walk
 - Relevant Quantities
 - Tool: Markov Chains
 - Hitting Time of the Standard Random Walk
 - Cover Time of the Standard Random Walk
- 4 Optimal (Pure) Random Walk
- 5 Conclusion
- 6 References

Roadmap

1 Introduction

2 Correctness

3 Complexity of the Standard Random Walk

- Relevant Quantities
- Tool: Markov Chains
- Hitting Time of the Standard Random Walk
- Cover Time of the Standard Random Walk

4 Optimal (Pure) Random Walk

5 Conclusion

6 References

Context

Let $G = (V, E)$ be a finite, simple, and connected graph with order $n = |V| \geq 2$ and size $m = |E|$

$\forall u \in V$, let $N(u) = \{v \mid \{u, v\} \in E\}$ be the **neighborhood** of u .

$N[u] = N(u) \cup \{u\}$ is the **closed neighborhood** of u and $\delta_u = |N(u)|$ is the **degree** of u

Transition Probability Matrix

We will consider **pure random walks** where the probability distribution at each node is constant¹

The probability distributions are stored in a **transition probability matrix P for G** :

$$P = (p(u, v))_{u, v \in V} \in [0, 1]^{V \times V}$$

- $p(u, v)$ is the probability of moving from u to v

¹In case the probability distributions evolve along the time, a random walk is **biased**, e.g., the simulated annealing is a biased random walk in a state space

² $u \in N[u]$: to be more general, we allow a walk to stay for sometime at some nodes.

Transition Probability Matrix

We will consider **pure random walks** where the probability distribution at each node is constant¹

The probability distributions are stored in a **transition probability matrix P for G** :

$$P = (p(u, v))_{u, v \in V} \in [0, 1]^{V \times V}$$

- $p(u, v)$ is the probability of moving from u to v
- $\forall u \in V, \sum_{v \in N[u]} p(u, v) = 1$ and $v \notin N[u] \Rightarrow p(u, v) = 0$, indeed a walk is a graph traversal²

¹In case the probability distributions evolve along the time, a random walk is **biased**, e.g., the simulated annealing is a biased random walk in a state space

² $u \in N[u]$: to be more general, we allow a walk to stay for sometime at some nodes.

Transition Probability Matrix

We will consider **pure random walks** where the probability distribution at each node is constant¹

The probability distributions are stored in a **transition probability matrix P for G** :

$$P = (p(u, v))_{u, v \in V} \in [0, 1]^{V \times V}$$

- $p(u, v)$ is the probability of moving from u to v
- $\forall u \in V, \sum_{v \in N[u]} p(u, v) = 1$ and $v \notin N[u] \Rightarrow p(u, v) = 0$, indeed a walk is a graph traversal²

Let $\mathcal{P}(G)$ be the set of all transition probability matrix for G

¹In case the probability distributions evolve along the time, a random walk is **biased**, e.g., the simulated annealing is a biased random walk in a state space

² $u \in N[u]$: to be more general, we allow a walk to stay for sometime at some nodes.

Example: Uniform Transition Probability Matrix

$\forall u, v \in V:$

- $v \notin N(u) \Rightarrow p(u, v) = 0$
- $v \in N(u) \Rightarrow p(u, v) = \frac{1}{\delta_u}$

Remark: $\forall u, p(u, u) = 0$, so no wait!

Random Walk

Definition

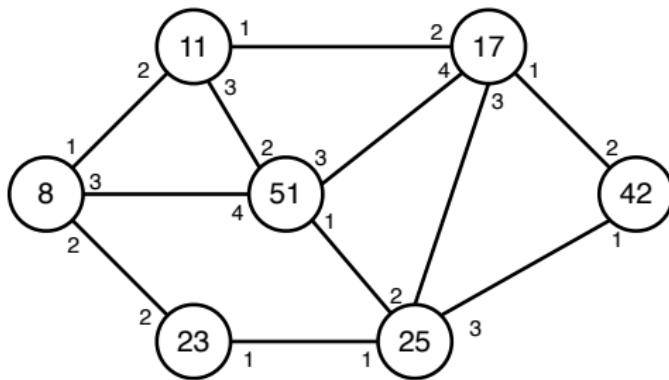
A **random walk** $\omega = (\omega_0, \omega_1, \dots)$ on G starting at vertex u under $P \in \mathcal{P}(G)$ is an infinite sequence of **random variables** ω_i whose domain is V such that

- $\omega_0 = u$ with probability 1, and
- $\forall i \in \mathbb{N}$, the (conditional) probability that $\omega_{i+1} = w$, provided that $\omega_i = v$, is $p(v, w)$

Random Walk

Example

The infinite random sequence $(51, 17, 11)^\omega$ is a random walk on the graph given below under a uniform transition probability matrix.



Remark: a random walk on a graph under a uniform transition probability matrix is called a **standard random walk**

Roadmap

1 Introduction

2 Correctness

3 Complexity of the Standard Random Walk

- Relevant Quantities
- Tool: Markov Chains
- Hitting Time of the Standard Random Walk
- Cover Time of the Standard Random Walk

4 Optimal (Pure) Random Walk

5 Conclusion

6 References

Correctness of the Random-walk-based Algorithm

$$\text{Correctness} = \text{Partial Correctness} + \text{Termination}$$

Partial Correctness: Trivial! The algorithm stops only if the packet has reached its destination.

Termination *almost sure*: Termination with probability one (Las Vegas Algorithm).

I.e., there are infinite executions where the destination is never reached (e.g., $(51, 17, 11)^\omega$), yet the overall probability of the occurrence of such executions is 0.

The almost sure termination is due to the fact that any vertex has probability 1 of occurring in any standard random walk on G .

Characterization

Let $S = (V_S, E_S)$ be the digraph such that

- $V_S = V$ and
- $E_S = \{(u, v) \in V^2 \mid p(u, v) > 0\}$

Theorem 1

For every $u, v \in V$, v has probability 1 of occurring in any random walk on G starting at vertex u under $P \in \mathcal{P}(G)$

if and only if

S is strongly connected.

Corollary 2

v has probability 1 of occurring in any standard random walk on G .

Proof of Theorem 1

Necessary Condition

Assume S is not strongly connected and let u, v be two nodes of S such that v is not reachable from u . ($u \neq v$)

Proof of Theorem 1

Necessary Condition

Assume S is not strongly connected and let u, v be two nodes of S such that v is not reachable from u . ($u \neq v$)

Assume, by the contradiction, that v occurs in a random walk on G starting at vertex u under P .

Let SP by the smallest prefix of the walk starting from u and ending with v .

Proof of Theorem 1

Necessary Condition

Assume S is not strongly connected and let u, v be two nodes of S such that v is not reachable from u . ($u \neq v$)

Assume, by the contradiction, that v occurs in a random walk on G starting at vertex u under P .

Let SP by the smallest prefix of the walk starting from u and ending with v .

Every two consecutive nodes w and w' in SP satisfies $p(w, w') > 0$, which in turn implies $(w, w') \in E_S$.

SP is a (directed) path from u to v in S : v is reachable from u in S , a contradiction. □

Proof of Theorem 1

Sufficient Condition

Let ω be any random walk on G starting at vertex u under P . Let $p_{\min} = \min\{p(w, w') \mid (w, w') \in E_S\}$.

Proof of Theorem 1

Sufficient Condition

Let ω be any random walk on G starting at vertex u under P . Let $p_{\min} = \min\{p(w, w') \mid (w, w') \in E_S\}$.

$p_{\min} > 0$, by definition of S .

Proof of Theorem 1

Sufficient Condition

Let ω be any random walk on G starting at vertex u under P . Let $p_{\min} = \min\{p(w, w') \mid (w, w') \in E_S\}$.

$p_{\min} > 0$, by definition of S .

Since S is strongly connected and $n > 1$, its diameter \mathcal{D} satisfies $1 \leq \mathcal{D} < n$.

Proof of Theorem 1

Sufficient Condition

Let ω be any random walk on G starting at vertex u under P . Let $p_{\min} = \min\{p(w, w') \mid (w, w') \in E_S\}$.

$p_{\min} > 0$, by definition of S .

Since S is strongly connected and $n > 1$, its diameter \mathcal{D} satisfies $1 \leq \mathcal{D} < n$.

In every suffix s of ω , the probability that v occurs among the first \mathcal{D} values of s is at least $0 < (p_{\min})^{\mathcal{D}} \leq 1$. Indeed, there is an elementary path of length at most \mathcal{D} from any vertex to v in S .

Proof of Theorem 1

Sufficient Condition

Let ω be any random walk on G starting at vertex u under P . Let $p_{\min} = \min\{p(w, w') \mid (w, w') \in E_S\}$.

$p_{\min} > 0$, by definition of S .

Since S is strongly connected and $n > 1$, its diameter \mathcal{D} satisfies $1 \leq \mathcal{D} < n$.

In every suffix s of ω , the probability that v occurs among the first \mathcal{D} values of s is at least $0 < (p_{\min})^{\mathcal{D}} \leq 1$. Indeed, there is an elementary path of length at most \mathcal{D} from any vertex to v in S .

So, the probability that v does not occur among the first $k \times \mathcal{D}$ values of ω is at most $(1 - (p_{\min})^{\mathcal{D}})^k$.

Proof of Theorem 1

Sufficient Condition

Let ω be any random walk on G starting at vertex u under P . Let $p_{\min} = \min\{p(w, w') \mid (w, w') \in E_S\}$.

$p_{\min} > 0$, by definition of S .

Since S is strongly connected and $n > 1$, its diameter \mathcal{D} satisfies $1 \leq \mathcal{D} < n$.

In every suffix s of ω , the probability that v occurs among the first \mathcal{D} values of s is at least $0 < (p_{\min})^{\mathcal{D}} \leq 1$. Indeed, there is an elementary path of length at most \mathcal{D} from any vertex to v in S .

So, the probability that v does not occur among the first $k \times \mathcal{D}$ values of ω is at most $(1 - (p_{\min})^{\mathcal{D}})^k$.

Now, $\lim_{k \rightarrow \infty} (1 - (p_{\min})^{\mathcal{D}})^k = 0$ since $0 \leq 1 - (p_{\min})^{\mathcal{D}} < 1$.

Hence, v has probability 1 of occurring in ω .

□

Roadmap

- 1 Introduction
- 2 Correctness
- 3 Complexity of the Standard Random Walk
 - Relevant Quantities
 - Tool: Markov Chains
 - Hitting Time of the Standard Random Walk
 - Cover Time of the Standard Random Walk
- 4 Optimal (Pure) Random Walk
- 5 Conclusion
- 6 References

Roadmap

1 Introduction

2 Correctness

3 Complexity of the Standard Random Walk

- Relevant Quantities

- Tool: Markov Chains

- Hitting Time of the Standard Random Walk

- Cover Time of the Standard Random Walk

4 Optimal (Pure) Random Walk

5 Conclusion

6 References

Relevant Quantities

Hitting Time: informally, the hitting time is the expected time to **move to a node v** in a random walk

(from a routing point of view, it is the expected length of the routing path)

Cover Time: informally, the cover time is the expected time to **visit all nodes** in a random walk

Hitting Time

Given a random walk $\omega = (\omega_0, \omega_1, \dots)$ starting at vertex $u \in V$, the hitting time $H_G(P; u, v)$ from u to v under P is:

$$H_G(P; u, v) = E_P[\inf\{i \geq 1 \mid \omega_i = v\}]$$

i.e., the expectation of the smallest time where ω reaches v after leaving u .

Hitting Time

Given a random walk $\omega = (\omega_0, \omega_1, \dots)$ starting at vertex $u \in V$, the hitting time $H_G(P; u, v)$ from u to v under P is:

$$H_G(P; u, v) = E_P[\inf\{i \geq 1 \mid \omega_i = v\}]$$

i.e., the expectation of the smallest time where ω reaches v after leaving u .

Remark: $H_G(P; u, u)$ is the expectation of the smallest time for ω to leave and then return to u !

The hitting time $H_G(P)$ of G under P is:

$$H_G(P) = \max_{u, v \in V} H_G(P; u, v)$$

Hitting Time

Given a random walk $\omega = (\omega_0, \omega_1, \dots)$ starting at vertex $u \in V$, the hitting time $H_G(P; u, v)$ from u to v under P is:

$$H_G(P; u, v) = E_P[\inf\{i \geq 1 \mid \omega_i = v\}]$$

i.e., the expectation of the smallest time where ω reaches v after leaving u .

Remark: $H_G(P; u, u)$ is the expectation of the smallest time for ω to leave and then return to u !

The hitting time $H_G(P)$ of G under P is:

$$H_G(P) = \max_{u, v \in V} H_G(P; u, v)$$

In the following, we will denote by $\mathcal{H}_G(u, v)$ the hitting time from u to v in a **standard random walk** on G .

Cover Time

Given a random walk $\omega = (\omega_0, \omega_1, \dots)$ starting at vertex $u \in V$, the cover time $C_G(P; u)$ from u under P is:

$$C_G(P; u) = E_P[\inf\{i \geq 1 \mid \{\omega_0, \dots, \omega_i\} = V\}]$$

i.e., the expectation of the smallest time for ω to visit all vertices starting from u .

The cover time $C_G(P)$ of G under P is:

$$C_G(P) = \max_{u \in V} C_G(P; u)$$

Roadmap

1 Introduction

2 Correctness

3 Complexity of the Standard Random Walk

- Relevant Quantities
- **Tool: Markov Chains**
- Hitting Time of the Standard Random Walk
- Cover Time of the Standard Random Walk

4 Optimal (Pure) Random Walk

5 Conclusion

6 References

Definition

A **Markov chain** or Markov process is a stochastic model where the probability of future (next) state only depends on the most recent (current) state.

This memoryless property of a stochastic process is called **Markov property**.

From a probability perspective, the Markov property implies that the conditional probability distribution of the future state (conditioned on both past and current states) only depends on the current state.

Definition

A **Markov chain** or Markov process is a stochastic model where the probability of future (next) state only depends on the most recent (current) state.

This memoryless property of a stochastic process is called **Markov property**.

From a probability perspective, the Markov property implies that the conditional probability distribution of the future state (conditioned on both past and current states) only depends on the current state.

A Markov chain is usually represented as a **weighted digraph** where nodes are states and arcs are possible transitions weighted with their positive probability of occurrence.

Definition

A **Markov chain** or Markov process is a stochastic model where the probability of future (next) state only depends on the most recent (current) state.

This memoryless property of a stochastic process is called **Markov property**.

From a probability perspective, the Markov property implies that the conditional probability distribution of the future state (conditioned on both past and current states) only depends on the current state.

A Markov chain is usually represented as a **weighted digraph** where nodes are states and arcs are possible transitions weighted with their positive probability of occurrence.

A Markov chain in which every state can be reached from every other state is called an **irreducible Markov chain**.

Example

A random walk on a graph as the Markov property: it can be modeled by a finite Markov chain.

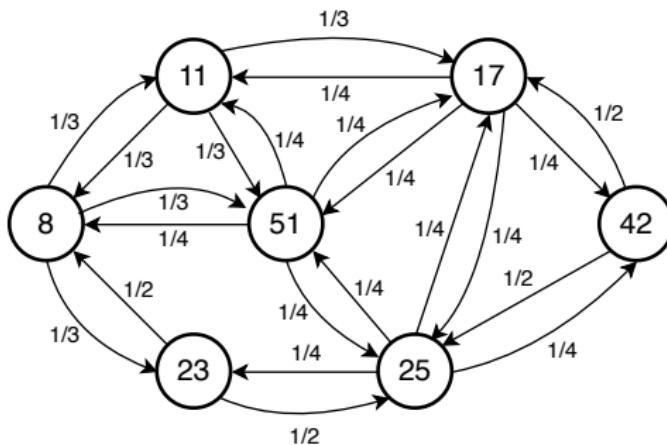
For example, the weighted digraph S in Theorem 1 is a Markov Chain.

Example

A random walk on a graph as the Markov property: it can be modeled by a finite Markov chain.

For example, the weighted digraph S in Theorem 1 is a Markov Chain.

Below, we give the Markov chain corresponding to the standard random walk on our sample graph.



Stationary Distribution of a Markov Chain

The **stationary distribution** $\pi = (\pi_i)_{i \in E}$ of a Markov chain gives the fraction of the time spent in each state i of the state space E of this Markov chain, asymptotically.

Let $S_n(i)$ the time spent in state i after the first n steps.

$$\pi_i = \lim_{n \rightarrow \infty} \frac{S_n(i)}{n}$$

Corollary 3

Any **finite irreducible Markov chain** has a stationary distribution $\pi = (\pi_i)_{i \in E}$ that is the **unique solution** of:

- ① $\sum_{i \in E} \pi_i = 1$, and
- ② $\forall j \in E, \sum_{i \in E} \pi_i p(i, j) = \pi_j$

where $p(i, j)$ are the transition probabilities of the Markov chain.

Intuition:

Corollary 3

Any **finite irreducible Markov chain** has a stationary distribution

$\pi = (\pi_i)_{i \in E}$ that is the **unique solution** of:

- ① $\sum_{i \in E} \pi_i = 1$, and
- ② $\forall j \in E, \sum_{i \in E} \pi_i p(i, j) = \pi_j$

where $p(i, j)$ are the transition probabilities of the Markov chain.

Intuition:

- ① In a distribution, the sum of probabilities is equal to 1

Corollary 3

Any **finite irreducible Markov chain** has a stationary distribution

$\pi = (\pi_i)_{i \in E}$ that is the **unique solution** of:

- ① $\sum_{i \in E} \pi_i = 1$, and
- ② $\forall j \in E, \sum_{i \in E} \pi_i p(i, j) = \pi_j$

where $p(i, j)$ are the transition probabilities of the Markov chain.

Intuition:

- ① In a distribution, **the sum of probabilities is equal to 1**
- ② From i , j is reached in one step with probability $p(i, j)$: **it is the fraction of time j is reached from i provided that the walk is in i**

Corollary 3

Any **finite irreducible Markov chain** has a stationary distribution

$\pi = (\pi_i)_{i \in E}$ that is the **unique solution** of:

- ① $\sum_{i \in E} \pi_i = 1$, and
- ② $\forall j \in E, \sum_{i \in E} \pi_i p(i, j) = \pi_j$

where $p(i, j)$ are the transition probabilities of the Markov chain.

Intuition:

- ① In a distribution, the sum of probabilities is equal to 1
- ② From i , j is reached in one step with probability $p(i, j)$: it is the fraction of time j is reached from i provided that the walk is in i
 π_i is the fraction of the time spent in i
So, $\pi_i p(i, j)$ gives the fraction of time j is reached from i

Corollary 3

Any **finite irreducible Markov chain** has a stationary distribution

$\pi = (\pi_i)_{i \in E}$ that is the **unique solution** of:

- ① $\sum_{i \in E} \pi_i = 1$, and
- ② $\forall j \in E, \sum_{i \in E} \pi_i p(i, j) = \pi_j$

where $p(i, j)$ are the transition probabilities of the Markov chain.

Intuition:

- ① In a distribution, the sum of probabilities is equal to 1
- ② From i , j is reached in one step with probability $p(i, j)$: it is the fraction of time j is reached from i provided that the walk is in i
 π_i is the fraction of the time spent in i
So, $\pi_i p(i, j)$ gives the fraction of time j is reached from i
Now, the fraction of the time spent in each state j , π_j , is the fraction of time j is reached from all states of E

Fundamental Result

from [6]

Lemma 4

$$\forall u \in V, \mathcal{H}_G(u, u) = \frac{2m}{\delta_u}$$

Intuition:

Fundamental Result

from [6]

Lemma 4

$$\forall u \in V, \mathcal{H}_G(u, u) = \frac{2m}{\delta_u}$$

Intuition:

- Since G has m edges, the Markov chain associated to the standard random walk on G has $2m$ arcs

Fundamental Result

from [6]

Lemma 4

$$\forall u \in V, \mathcal{H}_G(u, u) = \frac{2m}{\delta_u}$$

Intuition:

- Since G has m edges, the Markov chain associated to the standard random walk on G has $2m$ arcs
- Since the random walk is standard, the traversing of any arc is asymptotically equiprobable, i.e., the stationary probability of any arc is $\frac{1}{2m}$

Fundamental Result

from [6]

Lemma 4

$$\forall u \in V, \mathcal{H}_G(u, u) = \frac{2m}{\delta_u}$$

Intuition:

- Since G has m edges, the Markov chain associated to the standard random walk on G has $2m$ arcs
- Since the random walk is standard, the traversing of any arc is asymptotically equiprobable, *i.e.*, the stationary probability of any arc is $\frac{1}{2m}$
- The stationary probability of a node u , π_u , is the sum of the stationary probability of its incoming arcs

Fundamental Result

from [6]

Lemma 4

$$\forall u \in V, \mathcal{H}_G(u, u) = \frac{2m}{\delta_u}$$

Intuition:

- Since G has m edges, the Markov chain associated to the standard random walk on G has $2m$ arcs
- Since the random walk is standard, the traversing of any arc is asymptotically equiprobable, *i.e.*, the stationary probability of any arc is $\frac{1}{2m}$
- The stationary probability of a node u , π_u , is the sum of the stationary probability of its incoming arcs
- Since a node u has δ_u incoming arcs in the Markov chain, we have $\pi_u = \frac{\delta_u}{2m}$

Fundamental Result

from [6]

Lemma 4

$$\forall u \in V, \mathcal{H}_G(u, u) = \frac{2m}{\delta_u}$$

Intuition:

- Since G has m edges, the Markov chain associated to the standard random walk on G has $2m$ arcs
- Since the random walk is standard, the traversing of any arc is asymptotically equiprobable, i.e., the stationary probability of any arc is $\frac{1}{2m}$
- The stationary probability of a node u , π_u , is the sum of the stationary probability of its incoming arcs
- Since a node u has δ_u incoming arcs in the Markov chain, we have $\pi_u = \frac{\delta_u}{2m}$
- Since π_u is the fraction of the time spent in vertex u during the walk, we have $\mathcal{H}_G(u, u) = \frac{1}{\pi_u}$, i.e., $\mathcal{H}_G(u, u) = \frac{2m}{\delta_u}$

Proof of Lemma 4 (1/2)

Consider an arbitrary standard random walk ω on G . Let $\pi = (\pi_v)_{v \in V}$ be the stationary distribution of Markov chain that models ω .

Proof of Lemma 4 (1/2)

Consider an arbitrary standard random walk ω on G . Let $\pi = (\pi_v)_{v \in V}$ be the stationary distribution of Markov chain that models ω .

$$\mathcal{H}_G(u, u) = \frac{1}{\pi_u}.$$

Proof of Lemma 4 (1/2)

Consider an arbitrary standard random walk ω on G . Let $\pi = (\pi_v)_{v \in V}$ be the stationary distribution of Markov chain that models ω .

$$\mathcal{H}_G(u, u) = \frac{1}{\pi_u}.$$

Thus, the lemma holds if $\pi_u = \frac{\delta_u}{2m}$.

Proof of Lemma 4 (1/2)

Consider an arbitrary standard random walk ω on G . Let $\pi = (\pi_v)_{v \in V}$ be the stationary distribution of Markov chain that models ω .

$$\mathcal{H}_G(u, u) = \frac{1}{\pi_u}.$$

Thus, the lemma holds if $\pi_u = \frac{\delta_u}{2m}$.

V is a finite set. G is connected and at each node, the probability of traversing each incident edge is strictly positive. So, the Markov chain modeling ω is **finite and irreducible**. Hence, Corollary 3 applies: $\forall u \in V$, $\pi_u := \frac{\delta_u}{2m}$ should be the solution of

- $\sum_{u \in V} \pi_u = 1$, and
- $\forall v \in V$, $\sum_{u \in V} \pi_u p(u, v) = \pi_v$

where $p(u, v) = \frac{1}{\delta_u}$ if u and v are neighbors, 0 otherwise.

Proof of Lemma 4 (1/2)

Consider an arbitrary standard random walk ω on G . Let $\pi = (\pi_v)_{v \in V}$ be the stationary distribution of Markov chain that models ω .

$$\mathcal{H}_G(u, u) = \frac{1}{\pi_u}.$$

Thus, the lemma holds if $\pi_u = \frac{\delta_u}{2m}$.

V is a finite set. G is connected and at each node, the probability of traversing each incident edge is strictly positive. So, the Markov chain modeling ω is **finite and irreducible**. Hence, Corollary 3 applies: $\forall u \in V$, $\pi_u := \frac{\delta_u}{2m}$ should be the solution of

- $\sum_{u \in V} \pi_u = 1$, and
- $\forall v \in V$, $\sum_{u \in V} \pi_u p(u, v) = \pi_v$

where $p(u, v) = \frac{1}{\delta_u}$ if u and v are neighbors, 0 otherwise.

$$\sum_{u \in V} \pi_u = \sum_{u \in V} \frac{\delta_u}{2m}$$

Proof of Lemma 4 (1/2)

Consider an arbitrary standard random walk ω on G . Let $\pi = (\pi_v)_{v \in V}$ be the stationary distribution of Markov chain that models ω .

$$\mathcal{H}_G(u, u) = \frac{1}{\pi_u}.$$

Thus, the lemma holds if $\pi_u = \frac{\delta_u}{2m}$.

V is a finite set. G is connected and at each node, the probability of traversing each incident edge is strictly positive. So, the Markov chain modeling ω is **finite and irreducible**. Hence, Corollary 3 applies: $\forall u \in V$, $\pi_u := \frac{\delta_u}{2m}$ should be the solution of

- $\sum_{u \in V} \pi_u = 1$, and
- $\forall v \in V$, $\sum_{u \in V} \pi_u p(u, v) = \pi_v$

where $p(u, v) = \frac{1}{\delta_u}$ if u and v are neighbors, 0 otherwise.

$$\begin{aligned}\sum_{u \in V} \pi_u &= \sum_{u \in V} \frac{\delta_u}{2m} \\ &= \frac{\sum_{u \in V} \delta_u}{2m}\end{aligned}$$

Proof of Lemma 4 (1/2)

Consider an arbitrary standard random walk ω on G . Let $\pi = (\pi_v)_{v \in V}$ be the stationary distribution of Markov chain that models ω .

$$\mathcal{H}_G(u, u) = \frac{1}{\pi_u}.$$

Thus, the lemma holds if $\pi_u = \frac{\delta_u}{2m}$.

V is a finite set. G is connected and at each node, the probability of traversing each incident edge is strictly positive. So, the Markov chain modeling ω is **finite and irreducible**. Hence, Corollary 3 applies: $\forall u \in V$, $\pi_u := \frac{\delta_u}{2m}$ should be the solution of

- $\sum_{u \in V} \pi_u = 1$, and
- $\forall v \in V$, $\sum_{u \in V} \pi_u p(u, v) = \pi_v$

where $p(u, v) = \frac{1}{\delta_u}$ if u and v are neighbors, 0 otherwise.

$$\begin{aligned} \sum_{u \in V} \pi_u &= \sum_{u \in V} \frac{\delta_u}{2m} \\ &= \frac{\sum_{u \in V} \delta_u}{2m} \\ &= \frac{2m}{2m} = 1 \end{aligned} \quad (\text{handshaking lemma, [2]})$$

Proof of Lemma 4 (2/2)

Let $v \in V$.

$$\sum_{u \in V} \pi_u p(u, v) = \sum_{u \in N(v)} \frac{\pi_u}{\delta_u} \quad \text{standard random walk}$$

Proof of Lemma 4 (2/2)

Let $v \in V$.

$$\begin{aligned} \sum_{u \in V} \pi_u p(u, v) &= \sum_{u \in N(v)} \frac{\pi_u}{\delta_u} && \text{standard random walk} \\ &= \sum_{u \in N(v)} \frac{\delta_u}{\delta_u 2m} && \pi_u := \frac{\delta_u}{2m} \end{aligned}$$

Proof of Lemma 4 (2/2)

Let $v \in V$.

$$\begin{aligned} \sum_{u \in V} \pi_u p(u, v) &= \sum_{u \in N(v)} \frac{\pi_u}{\delta_u} && \text{standard random walk} \\ &= \sum_{u \in N(v)} \frac{\delta_u}{\delta_u 2m} && \pi_u := \frac{\delta_u}{2m} \\ &= \sum_{u \in N(v)} \frac{1}{2m} \end{aligned}$$

Proof of Lemma 4 (2/2)

Let $v \in V$.

$$\begin{aligned}\sum_{u \in V} \pi_u p(u, v) &= \sum_{u \in N(v)} \frac{\pi_u}{\delta_u} && \text{standard random walk} \\ &= \sum_{u \in N(v)} \frac{\delta_u}{\delta_u 2m} && \pi_u := \frac{\delta_u}{2m} \\ &= \sum_{u \in N(v)} \frac{1}{2m} \\ &= \frac{\delta_v}{2m} && \delta_v = |N(v)| \\ &= \pi_v\end{aligned}$$

Thus, $\forall u \in V, \pi_u := \frac{\delta_u}{2m}$ is the solution!

□

Roadmap

- 1 Introduction
- 2 Correctness
- 3 Complexity of the Standard Random Walk
 - Relevant Quantities
 - Tool: Markov Chains
 - **Hitting Time of the Standard Random Walk**
 - Cover Time of the Standard Random Walk
- 4 Optimal (Pure) Random Walk
- 5 Conclusion
- 6 References

Bounds

In [1], the hitting time of the standard random walk is shown to be in

$$\Theta(n^3)$$

Bounds

In [1], the hitting time of the standard random walk is shown to be in

$$\Theta(n^3)$$

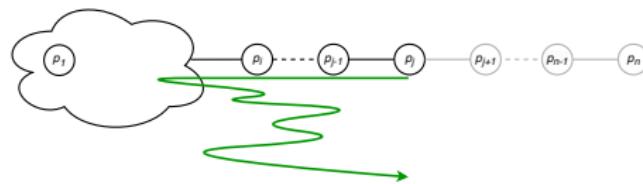
Let us now study the worst case

Basic properties

Let p_1, \dots, p_n the vertices of V .

Assume G has a pending line $L = p_i, \dots, p_n$ with $i > 1$: $\forall j \in \{i, \dots, n-1\}, \delta_{p_j} = 2$, $\delta_{p_n} = 1$, and the subgraph $G(L)$ induced by L is a line. Let p_{i-1} the neighbor of p_i such that $p_{i-1} \notin L$.

Assume a **random walk** starting from p_1

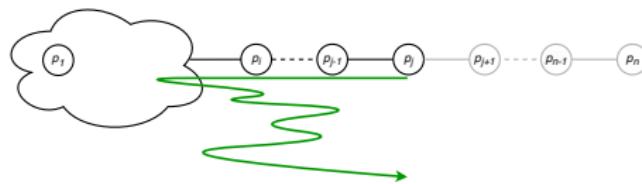


Basic properties

Let p_1, \dots, p_n the vertices of V .

Assume G has a pending line $L = p_i, \dots, p_n$ with $i > 1$: $\forall j \in \{i, \dots, n-1\}, \delta_{p_j} = 2$, $\delta_{p_n} = 1$, and the subgraph $G(L)$ induced by L is a line. Let p_{i-1} the neighbor of p_i such that $p_{i-1} \notin L$.

Assume a **random walk starting from p_1**



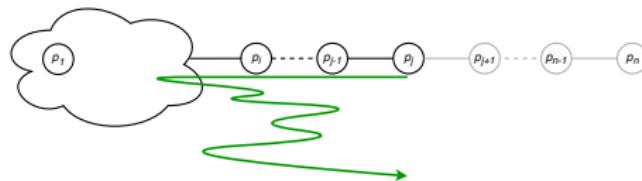
- 1 A walk that leaves and returns to p_n necessarily first goes to p_{n-1} , so $\mathcal{H}_G(p_n, p_n) = \mathcal{H}_G(p_n, p_{n-1}) + \mathcal{H}_G(p_{n-1}, p_n) = 1 + \mathcal{H}_G(p_{n-1}, p_n)$, so $\mathcal{H}_G(p_{n-1}, p_n) = \mathcal{H}_G(p_n, p_n) - 1 = 2m - 1$, by Lemma 4

Basic properties

Let p_1, \dots, p_n the vertices of V .

Assume G has a pending line $L = p_i, \dots, p_n$ with $i > 1$: $\forall j \in \{i, \dots, n-1\}, \delta_{p_j} = 2$, $\delta_{p_n} = 1$, and the subgraph $G(L)$ induced by L is a line. Let p_{i-1} the neighbor of p_i such that $p_{i-1} \notin L$.

Assume a **random walk** starting from p_1



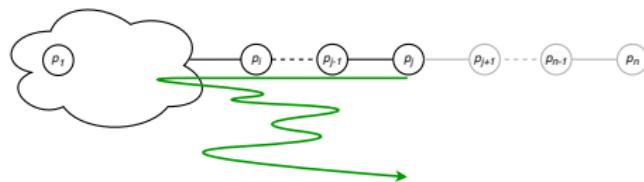
- 1 A walk that leaves and returns to p_n necessarily first goes to p_{n-1} , so $\mathcal{H}_G(p_n, p_n) = \mathcal{H}_G(p_n, p_{n-1}) + \mathcal{H}_G(p_{n-1}, p_n) = 1 + \mathcal{H}_G(p_{n-1}, p_n)$, so $\mathcal{H}_G(p_{n-1}, p_n) = \mathcal{H}_G(p_n, p_n) - 1 = 2m - 1$, by Lemma 4
- 2 $\forall j \in \{i, \dots, n\}, \mathcal{H}_G(p_1, p_j) = \mathcal{H}_G(p_1, p_{j-1}) + \mathcal{H}_G(p_{j-1}, p_j)$: a walk from p_1 to p_j necessarily go via p_{j-1}

Basic properties

Let p_1, \dots, p_n the vertices of V .

Assume G has a pending line $L = p_i, \dots, p_n$ with $i > 1$: $\forall j \in \{i, \dots, n-1\}, \delta_{p_j} = 2$, $\delta_{p_n} = 1$, and the subgraph $G(L)$ induced by L is a line. Let p_{i-1} the neighbor of p_i such that $p_{i-1} \notin L$.

Assume a **random walk** starting from p_1



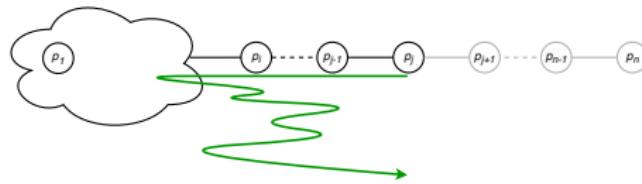
- ① A walk that leaves and returns to p_n necessarily first goes to p_{n-1} , so $\mathcal{H}_G(p_n, p_n) = \mathcal{H}_G(p_n, p_{n-1}) + \mathcal{H}_G(p_{n-1}, p_n) = 1 + \mathcal{H}_G(p_{n-1}, p_n)$, so $\mathcal{H}_G(p_{n-1}, p_n) = \mathcal{H}_G(p_n, p_n) - 1 = 2m - 1$, by Lemma 4
- ② $\forall j \in \{i, \dots, n\}, \mathcal{H}_G(p_1, p_j) = \mathcal{H}_G(p_1, p_{j-1}) + \mathcal{H}_G(p_{j-1}, p_j)$: a walk from p_1 to p_j necessarily go via p_{j-1}
- ③ $\forall j \in \{i, \dots, n\}, \mathcal{H}_G(p_{j-1}, p_j) = \mathcal{P}_{G(V \setminus \{p_{j+1}, \dots, p_n\}}(p_{j-1}, p_j)$: a walk from p_{j-1} hits p_j before any vertex in p_{j+1}, \dots, p_n .

Basic properties

Let p_1, \dots, p_n the vertices of V .

Assume G has a pending line $L = p_i, \dots, p_n$ with $i > 1$: $\forall j \in \{i, \dots, n-1\}, \delta_{p_j} = 2$, $\delta_{p_n} = 1$, and the subgraph $G(L)$ induced by L is a line. Let p_{i-1} the neighbor of p_i such that $p_{i-1} \notin L$.

Assume a **random walk** starting from p_1



- ① A walk that leaves and returns to p_n necessarily first goes to p_{n-1} , so $\mathcal{H}_G(p_n, p_n) = \mathcal{H}_G(p_n, p_{n-1}) + \mathcal{H}_G(p_{n-1}, p_n) = 1 + \mathcal{H}_G(p_{n-1}, p_n)$, so $\mathcal{H}_G(p_{n-1}, p_n) = \mathcal{H}_G(p_n, p_n) - 1 = 2m - 1$, by Lemma 4
- ② $\forall j \in \{i, \dots, n\}, \mathcal{H}_G(p_1, p_j) = \mathcal{H}_G(p_1, p_{j-1}) + \mathcal{H}_G(p_{j-1}, p_j)$: a walk from p_1 to p_j necessarily go via p_{j-1}
- ③ $\forall j \in \{i, \dots, n\}, \mathcal{H}_G(p_{j-1}, p_j) = \mathcal{P}_{G(V \setminus \{p_{j+1}, \dots, p_n\}}(p_{j-1}, p_j)$: a walk from p_{j-1} hits p_j before any vertex in p_{j+1}, \dots, p_n .
- ④ $\forall j \in \{i, \dots, n\}, \mathcal{H}_G(p_{j-1}, p_j) = \mathcal{P}_{G(V \setminus \{p_{j+1}, \dots, p_n\}}(p_{j-1}, p_j) = 2(m - (n - j)) - 1 = 2m - (2n - 2j + 1)$ by Property 1

First attempt: a line L

L : $p_1 — p_2 — \dots — p_n$ with $n > 1$

L is p_1 linked to a pending line p_2, \dots, p_n so previous properties apply with $i = 2$.

$$\mathcal{H}_G(p_1, p_n) =$$

First attempt: a line L

L : $p_1 — p_2 — \dots — p_n$ with $n > 1$

L is p_1 linked to a pending line p_2, \dots, p_n so previous properties apply with $i = 2$.

$$\mathcal{H}_G(p_1, p_n) = \sum_{j=2}^n \mathcal{H}_G(p_{j-1}, p_j) \quad \text{by Property 2}$$

First attempt: a line L

L : $p_1 — p_2 — \dots — p_n$ with $n > 1$

L is p_1 linked to a pending line p_2, \dots, p_n so previous properties apply with $i = 2$.

$$\begin{aligned}\mathcal{H}_G(p_1, p_n) &= \sum_{j=2}^n \mathcal{H}_G(p_{j-1}, p_j) && \text{by Property 2} \\ &= \sum_{j=2}^n (2m - (2n - 2j + 1)) && \text{by Property 4}\end{aligned}$$

First attempt: a line L

L : $p_1 — p_2 — \dots — p_n$ with $n > 1$

L is p_1 linked to a pending line p_2, \dots, p_n so previous properties apply with $i = 2$.

$$\begin{aligned}\mathcal{H}_G(p_1, p_n) &= \sum_{j=2}^n \mathcal{H}_G(p_{j-1}, p_j) && \text{by Property 2} \\ &= \sum_{j=2}^n (2m - (2n - 2j + 1)) && \text{by Property 4} \\ &= \sum_{j=2}^n (2n - 2 - (2n - 2j + 1)) && m = n - 1\end{aligned}$$

First attempt: a line L

L : $p_1 — p_2 — \dots — p_n$ with $n > 1$

L is p_1 linked to a pending line p_2, \dots, p_n so previous properties apply with $i = 2$.

$$\begin{aligned}\mathcal{H}_G(p_1, p_n) &= \sum_{j=2}^n \mathcal{H}_G(p_{j-1}, p_j) && \text{by Property 2} \\ &= \sum_{j=2}^n (2m - (2n - 2j + 1)) && \text{by Property 4} \\ &= \sum_{j=2}^n (2n - 2 - (2n - 2j + 1)) && m = n - 1 \\ &= \sum_{j=2}^n (2j - 3)\end{aligned}$$

First attempt: a line L

L : $p_1 — p_2 — \dots — p_n$ with $n > 1$

L is p_1 linked to a pending line p_2, \dots, p_n so previous properties apply with $i = 2$.

$$\begin{aligned}\mathcal{H}_G(p_1, p_n) &= \sum_{j=2}^n \mathcal{H}_G(p_{j-1}, p_j) && \text{by Property 2} \\ &= \sum_{j=2}^n (2m - (2n - 2j + 1)) && \text{by Property 4} \\ &= \sum_{j=2}^n (2n - 2 - (2n - 2j + 1)) && m = n - 1 \\ &= \sum_{j=2}^n (2j - 3) \\ &= 3 - 3n + \sum_{j=2}^n 2j = 3 - 3n + 2 \sum_{j=2}^n j && (n - 1). - 3 = 3 - 3n\end{aligned}$$

First attempt: a line L

L : $p_1 — p_2 — \dots — p_n$ with $n > 1$

L is p_1 linked to a pending line p_2, \dots, p_n so previous properties apply with $i = 2$.

$$\begin{aligned}\mathcal{H}_G(p_1, p_n) &= \sum_{j=2}^n \mathcal{H}_G(p_{j-1}, p_j) && \text{by Property 2} \\ &= \sum_{j=2}^n (2m - (2n - 2j + 1)) && \text{by Property 4} \\ &= \sum_{j=2}^n (2n - 2 - (2n - 2j + 1)) && m = n - 1 \\ &= \sum_{j=2}^n (2j - 3) \\ &= 3 - 3n + \sum_{j=2}^n 2j = 3 - 3n + 2 \sum_{j=2}^n j && (n-1). - 3 = 3 - 3n \\ &= 3 - 3n + 2 \frac{(n+2)(n-1)}{2}\end{aligned}$$

First attempt: a line L

L : $p_1 — p_2 — \dots — p_n$ with $n > 1$

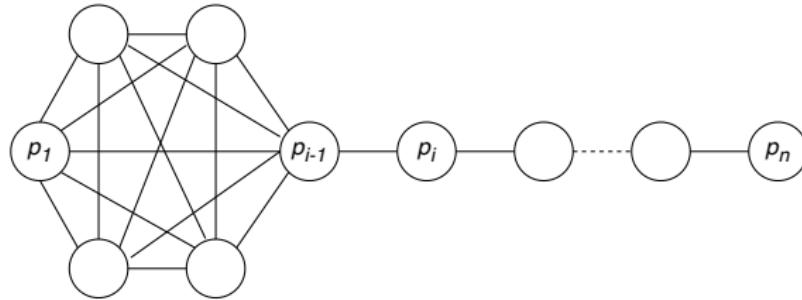
L is p_1 linked to a pending line p_2, \dots, p_n so previous properties apply with $i = 2$.

$$\begin{aligned}\mathcal{H}_G(p_1, p_n) &= \sum_{j=2}^n \mathcal{H}_G(p_{j-1}, p_j) && \text{by Property 2} \\ &= \sum_{j=2}^n (2m - (2n - 2j + 1)) && \text{by Property 4} \\ &= \sum_{j=2}^n (2n - 2 - (2n - 2j + 1)) && m = n - 1 \\ &= \sum_{j=2}^n (2j - 3) \\ &= 3 - 3n + \sum_{j=2}^n 2j = 3 - 3n + 2 \sum_{j=2}^n j && (n-1). - 3 = 3 - 3n \\ &= 3 - 3n + 2 \frac{(n+2)(n-1)}{2} \\ &= n^2 - 2n + 1 \in \Theta(n^2)\end{aligned}$$

Second attempt: Lollipop

A **lollipop** consists of a clique linked by a bridge to a line

Let us consider a lollipop made of vertices p_1, \dots, p_n with $n > 2$ where p_1, p_{i-1} is the clique with $i > 2$ and a standard random walk starting from p_1



$$m = \frac{(i-1)(i-2)}{2} + n - (i-1) = \frac{i^2 - 5i}{2} + n + 2$$

Analysis (1/3)

Until reaching p_{i-1} , the probability of hitting p_{i-1} at the next step is $\frac{1}{i-2}$: it is a geometric law. Thus,

$$\mathcal{H}_G(p_1, p_{i-1}) = i - 2$$

We now compute $\mathcal{H}_G(p_1, p_n)$

Analysis (2/3)

$$\mathcal{H}_G(p_1, p_n) =$$

Analysis (2/3)

$$\mathcal{H}_G(p_1, p_n) = \mathcal{H}_G(p_1, p_{i-1}) + \sum_{j=i}^n \mathcal{H}_G(p_{j-1}, p_j) \quad \text{by Property 2}$$

Analysis (2/3)

$$\begin{aligned}\mathcal{H}_G(p_1, p_n) &= \mathcal{H}_G(p_1, p_{i-1}) + \sum_{j=i}^n \mathcal{H}_G(p_{j-1}, p_j) && \text{by Property 2} \\ &= i - 2 + \sum_{j=i}^n \mathcal{H}_G(p_{j-1}, p_j)\end{aligned}$$

Analysis (2/3)

$$\begin{aligned}\mathcal{H}_G(p_1, p_n) &= \mathcal{H}_G(p_1, p_{i-1}) + \sum_{j=i}^n \mathcal{H}_G(p_{j-1}, p_j) && \text{by Property 2} \\ &= i - 2 + \sum_{j=i}^n \mathcal{H}_G(p_{j-1}, p_j) \\ &= i - 2 + \sum_{j=i}^n (2m - (2n - 2j + 1)) && \text{by Property 4}\end{aligned}$$

Analysis (2/3)

$$\begin{aligned}\mathcal{H}_G(p_1, p_n) &= \mathcal{H}_G(p_1, p_{i-1}) + \sum_{j=i}^n \mathcal{H}_G(p_{j-1}, p_j) && \text{by Property 2} \\ &= i - 2 + \sum_{j=i}^n \mathcal{H}_G(p_{j-1}, p_j) \\ &= i - 2 + \sum_{j=i}^n (2m - (2n - 2j + 1)) && \text{by Property 4} \\ &= i - 2 + (n - i + 1) \cdot (2m - 2n - 1) + 2 \sum_{j=i}^n j\end{aligned}$$

Analysis (2/3)

$$\begin{aligned}\mathcal{H}_G(p_1, p_n) &= \mathcal{H}_G(p_1, p_{i-1}) + \sum_{j=i}^n \mathcal{H}_G(p_{j-1}, p_j) && \text{by Property 2} \\ &= i - 2 + \sum_{j=i}^n \mathcal{H}_G(p_{j-1}, p_j) \\ &= i - 2 + \sum_{j=i}^n (2m - (2n - 2j + 1)) && \text{by Property 4} \\ &= i - 2 + (n - i + 1) \cdot (2m - 2n - 1) + 2 \sum_{j=i}^n j \\ &= i - 2 + (n - i + 1) \cdot (2m - n + i - 1)\end{aligned}$$

Analysis (2/3)

$$\begin{aligned}\mathcal{H}_G(p_1, p_n) &= \mathcal{H}_G(p_1, p_{i-1}) + \sum_{j=i}^n \mathcal{H}_G(p_{j-1}, p_j) && \text{by Property 2} \\ &= i - 2 + \sum_{j=i}^n \mathcal{H}_G(p_{j-1}, p_j) \\ &= i - 2 + \sum_{j=i}^n (2m - (2n - 2j + 1)) && \text{by Property 4} \\ &= i - 2 + (n - i + 1) \cdot (2m - 2n - 1) + 2 \sum_{j=i}^n j \\ &= i - 2 + (n - i + 1) \cdot (2m - n + i - 1) \\ &= i - 2 + (n - i + 1) \cdot (i^2 - 4i + n + 3)\end{aligned}$$

Analysis (3/3)

Let $i := \frac{n}{4}$.

$$\begin{aligned}\mathcal{H}_G(p_1, p_n) &= \frac{n}{4} - 2 + \left(\frac{3n}{4} + 1\right) \cdot \left(\frac{n^2}{16} + 3\right) \\ &= \frac{3n^3}{64} + \frac{n^2}{16} + \frac{10n}{4} + 1 \in \Theta(n^3)\end{aligned}$$

Actually, the **lollipop** graph is shown to be the **worst case** in [6]: precisely the lollipops with a clique of $\frac{2n}{3}$ vertices

Roadmap

1 Introduction

2 Correctness

3 Complexity of the Standard Random Walk

- Relevant Quantities
- Tool: Markov Chains
- Hitting Time of the Standard Random Walk
- Cover Time of the Standard Random Walk

4 Optimal (Pure) Random Walk

5 Conclusion

6 References

Bounds

From [4, 3], we know that the cover time of the standard random walk is also in $\Theta(n^3)$.

Again, the worst-case graph is the lollipop with a clique of $\frac{2n}{3}$ vertices!

Interest of a bounded cover time

Simple Monte-Carlo Broadcast Algorithm

Let $C \geq C_G(P)$.

Assume u has a data d to broadcast.

Initialization

deliver d

pick $i \in \{1, \dots, \delta_u\}$ according to P_u

send $\langle d, 1 \rangle$ via port number i

✓ **receives** $\langle d, i \rangle$

deliver d

if $i < C$ **then**

pick $i \in \{1, \dots, \delta_v\}$ according to P_v

send $\langle d, i + 1 \rangle$ via port number i

end if

Termination in C hops and partial correctness *w.h.p.* (works in anonymous networks; yet, duplicates ...).

Roadmap

1 Introduction

2 Correctness

3 Complexity of the Standard Random Walk

- Relevant Quantities
- Tool: Markov Chains
- Hitting Time of the Standard Random Walk
- Cover Time of the Standard Random Walk

4 Optimal (Pure) Random Walk

5 Conclusion

6 References

What is the issue with the standard random walk?

What is the issue with the standard random walk?

Lemma 4 claims that **the more the degree of a node is the more often it is visited!**

It is an issue!

Indeed

- In the lollipop, we have both very high degree nodes and very low degree nodes: the hitting time is in $\Theta(n^3)$
- In a line, degrees are almost equal (either 1 or 2): the hitting time is in $\Theta(n^2)$ although the diameter is maximal!

What is the issue with the standard random walk?

Lemma 4 claims that **the more the degree of a node is the more often it is visited!**

It is an issue!

Indeed

- In the lollipop, we have both very high degree nodes and very low degree nodes: the hitting time is in $\Theta(n^3)$
- In a line, degrees are almost equal (either 1 or 2): the hitting time is in $\Theta(n^2)$ although the diameter is maximal!

Solution: load balance the probability distributions

Probability Distributions proposed in [7]

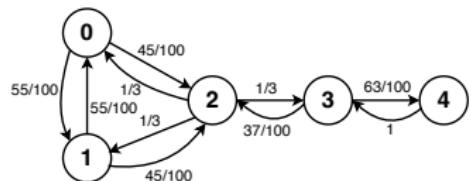
$$p(u, v) = \begin{cases} \frac{\delta_v^{-1/2}}{\sum\limits_{w \in N(u)} \delta_w^{-1/2}} & \text{if } v \in N(u) \\ 0 & \text{otherwise} \end{cases}$$

A minor drawback is that each node should know the degree of its neighbors
(but, it is still local information)

Probability Distributions proposed in [7]

$$p(u, v) = \begin{cases} \frac{\delta_v^{-1/2}}{\sum\limits_{w \in N(u)} \delta_w^{-1/2}} & \text{if } v \in N(u) \\ 0 & \text{otherwise} \end{cases}$$

Markov chain of the random walk given in [7] on a lollipop



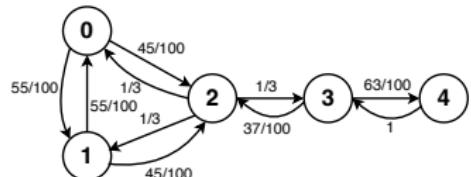
A minor drawback is that each node should know the degree of its neighbors
(but, it is still local information)

Probability Distributions proposed in [7]

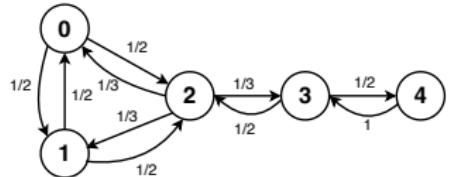
$$p(u, v) = \begin{cases} \frac{\delta_v^{-1/2}}{\sum\limits_{w \in N(u)} \delta_w^{-1/2}} & \text{if } v \in N(u) \\ 0 & \text{otherwise} \end{cases}$$

A minor drawback is that each node should know the degree of its neighbors
(but, it is still local information)

Markov chain of the random walk given in [7] on a lollipop



Markov chain of the standard random walk on the same graph



Bounds

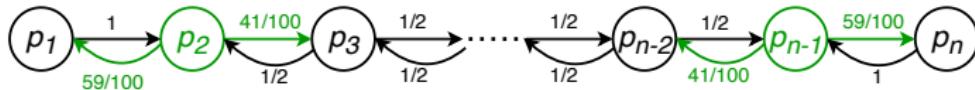
Hitting Time: $\Theta(n^2)$

It is the **optimal** distribution for the pure random walk

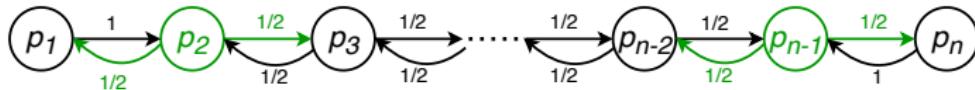
Cover Time: $O(n^2 \log n)$

A few more details

The lower bound is natural: in a line, only two vertices (p_2 and p_{n-1}) have distributions that differ from the standard random walk



Markov chain of the random walk given in [7] on a line



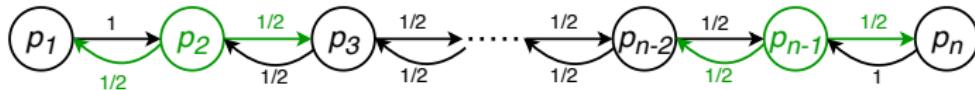
Markov chain of the standard random walk on a line

A few more details

The lower bound is natural: in a line, only two vertices (p_2 and p_{n-1}) have distributions that differ from the standard random walk



Markov chain of the random walk given in [7] on a line

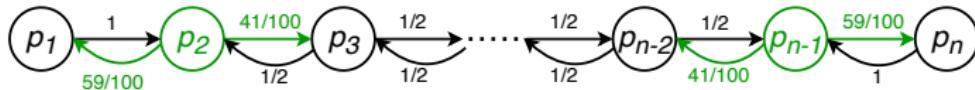


Markov chain of the standard random walk on a line

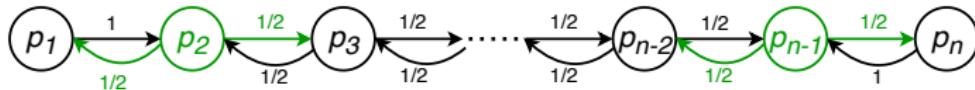
Intuition: With an arbitrary large line, the difference between the standard random walk and the one of [7] becomes negligible, thus we have $\Omega(n^2)$.

A few more details

The lower bound is natural: in a line, only two vertices (p_2 and p_{n-1}) have distributions that differ from the standard random walk



Markov chain of the random walk given in [7] on a line



Markov chain of the standard random walk on a line

Intuition: With an arbitrary large line, the difference between the standard random walk and the one of [7] becomes negligible, thus we have $\Omega(n^2)$.

Proof: Assume G is a line $p_1 — \dots — p_n$ with $n > 1$. Let $\mathfrak{H}_G(p_i, p_j)$ be the hitting time from p_i to p_j under the transition probability matrix of the random walk of [7].

$$\mathfrak{H}_G(p_1, p_n) > \mathfrak{H}_G(p_1, p_{n-1}) > \mathcal{H}_G(p_1, p_{n-1}) \in \Omega(n^2)$$

$$(n.b., \mathfrak{H}_G(p_1, p_{n-1}) > \mathcal{H}_G(p_1, p_{n-1}) \text{ since } \frac{41}{100} < \frac{1}{2})$$

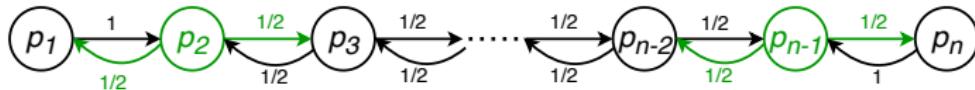
□

A few more details

The lower bound is natural: in a line, only two vertices (p_2 and p_{n-1}) have distributions that differ from the standard random walk



Markov chain of the random walk given in [7] on a line



Markov chain of the standard random walk on a line

Intuition: With an arbitrary large line, the difference between the standard random walk and the one of [7] becomes negligible, thus we have $\Omega(n^2)$.

Proof: Assume G is a line $p_1 — \dots — p_n$ with $n > 1$. Let $\mathfrak{H}_G(p_i, p_j)$ be the hitting time from p_i to p_j under the transition probability matrix of the random walk of [7].

$$\mathfrak{H}_G(p_1, p_n) > \mathfrak{H}_G(p_1, p_{n-1}) > \mathcal{H}_G(p_1, p_{n-1}) \in \Omega(n^2)$$

$$(n.b., \mathfrak{H}_G(p_1, p_{n-1}) > \mathcal{H}_G(p_1, p_{n-1}) \text{ since } \frac{41}{100} < \frac{1}{2})$$

□

The upper bound is more complex! (see [7])

Roadmap

1 Introduction

2 Correctness

3 Complexity of the Standard Random Walk

- Relevant Quantities
- Tool: Markov Chains
- Hitting Time of the Standard Random Walk
- Cover Time of the Standard Random Walk

4 Optimal (Pure) Random Walk

5 Conclusion

6 References

Pros and Cons of Random-walk-based Routing

Pros.

- Partially Correct
- Robust
- Adaptive
- Fair
- Messages: low message overhead and no control message
- Low memory at each process

Cons.

- Termination *almost sure* only
- Slow: $\Omega(n^2)$

In many large-scale networks, the diameter is *logarithmic in n* , e.g., IPv6, which allows for up to 2^{128} machines, assumes the diameter is at most 255!
- Not FIFO

Roadmap

1 Introduction

2 Correctness

3 Complexity of the Standard Random Walk

- Relevant Quantities
- Tool: Markov Chains
- Hitting Time of the Standard Random Walk
- Cover Time of the Standard Random Walk

4 Optimal (Pure) Random Walk

5 Conclusion

6 References

References

- [1] G. R. Brightwell and P. Winkler.
Maximum hitting time for random walks on graphs.
Random Struct. Algorithms, 1(3):263–276, 1990.
- [2] L. Euler.
Solutio problematis ad geometriam situs pertinentis.
Commentarii Academiae Scientiarum Imperialis Petropolitanae, 8:128–140, 1736.
- [3] U. Feige.
A tight lower bound on the cover time for random walks on graphs.
Random Struct. Algorithms, 6(4):433–438, 1995.
- [4] U. Feige.
A tight upper bound on the cover time for random walks on graphs.
Random Struct. Algorithms, 6(1):51–54, 1995.
- [5] G. Frobenius.
Über Matrizen aus nicht negativen Elementen.
Preussische Akademie der Wissenschaften Berlin: Sitzungsberichte der Preußischen Akademie der Wissenschaften zu Berlin. Reichsdr., 1912.
- [6] F. Gobel and A. Jagers.
Random walks on graphs.
Stochastic processes and their applications, 2(4):311–336, 1974.
- [7] S. Ikeda, I. Kubo, and M. Yamashita.
The hitting and cover times of random walks on finite graphs using local degree information.
Theor. Comput. Sci., 410(1):94–100, 2009.
- [8] O. Perron.
Zur theorie der matrices.
Mathematische Annalen, 64:248–263, 1907.