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Préambule

Trois objectifs :
1 Définir les fautes dans les systèmes distribués
2 Définir la tolérance aux fautes
3 Comprendre que la tolérance aux fautes c’est dur !

Cournier & Devismes Introduction à la tolérance aux fautes 12 janvier 2026 2 / 99



Les fautes
La tolérance aux fautes

Impossibilité du consensus asynchrone avec 0 ou 1 crash
Conclusion

Plan

1 Les fautes
Définition
Classification des fautes
Exemple de fautes (pannes)

2 La tolérance aux fautes
Définition
Approches

3 Impossibilité du consensus asynchrone avec 0 ou 1 crash
Introduction
Modèle
Preuve d’impossibilité

4 Conclusion

Cournier & Devismes Introduction à la tolérance aux fautes 12 janvier 2026 3 / 99



Les fautes
La tolérance aux fautes

Impossibilité du consensus asynchrone avec 0 ou 1 crash
Conclusion

Définition
Classification des fautes
Exemple de fautes (pannes)

Les fautes

Cournier & Devismes Introduction à la tolérance aux fautes 12 janvier 2026 4 / 99



Les fautes
La tolérance aux fautes

Impossibilité du consensus asynchrone avec 0 ou 1 crash
Conclusion

Définition
Classification des fautes
Exemple de fautes (pannes)

Plan

1 Les fautes
Définition
Classification des fautes
Exemple de fautes (pannes)

2 La tolérance aux fautes
Définition
Approches

3 Impossibilité du consensus asynchrone avec 0 ou 1 crash
Introduction
Modèle
Preuve d’impossibilité

4 Conclusion

Cournier & Devismes Introduction à la tolérance aux fautes 12 janvier 2026 5 / 99



Les fautes
La tolérance aux fautes

Impossibilité du consensus asynchrone avec 0 ou 1 crash
Conclusion

Définition
Classification des fautes
Exemple de fautes (pannes)

Qu’est-ce qu’une faute ?

« une faute provoque une erreur qui entraîne une défaillance ».
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Défaillances/pannes

On parle de la défaillance d’un composant (ou d’un système) lorsque son
comportement n’est plus conforme à sa spécification.

Composant du réseau = lien de communication ou nœud
(nœud = processus, machine . . .)

On parlera de nœud correct (resp. lien fiable) lorsque le nœud (resp. le lien)
ne subit pas de défaillance.

Exemples :
Un processus arrête d’exécuter un programme.
Un lien de communication perd un message.
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Lien fiable

La spécification d’un lien fiable consiste en la conjonction des trois propriétés
suivantes :

Pas de création : Tout message reçu par un processus p venant du processus
q a été envoyé au préalable par q à p.

Pas de duplication : Tout message est reçu au plus une fois.
Pas de perte : Tout message envoyé est livré au récepteur en temps fini.
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Erreurs

Une erreur est un état du système à partir duquel la poursuite de l’exécution
est susceptible de conduire à une défaillance.

Des exemples de telles situations sont :
un chaînage d’une liste chainée corrompu ou un pointeur non initialisé :
il s’agit ici d’erreurs logicielles ;
un câble du réseau déconnecté ou une unité disque éteinte : il s’agit ici
d’erreurs matérielles.
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Fautes

Une faute est un événement ayant entrainé une erreur.

Il peut s’agir
d’une faute de programmation (pour les erreurs logicielles) ou
d’événements physiques, e.g., usure, malveillance, catastrophe, . . .(dans
le cas d’erreurs matérielles).

Dans le cadre de ce cours, nous ne considérerons que des fautes matérielles,
e.g., coupure d’un lien, perturbation électro-magnétique du signal dans un
lien . . .
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Faute, erreur, défaillance

La différence est subtile !

Dans la suite de ce cours, ces trois termes seront considérés comme
synonymes.
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Fautes dans les réseaux

Les réseaux sont naturellement sujets aux fautes.

Plus le nombre de processus est important, plus la probabilité qu’un
composant du réseau subisse une faute durant l’exécution d’un protocole est
importante.

Par exemple, si on considère le réseau internet (350 millions de serveurs en
2006), il est impossible d’imaginer qu’un tel réseau puisse fonctionner ne
serait-ce qu’une heure sans subir la moindre faute !

Il faut aussi noter que la plupart des réseaux actuels sont constitués de
machines « grand public » produites en grand nombre à prix réduit : d’où, un
risque de défaut plus important.
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Critères pour la classification des fautes

Les fautes sont généralement classées suivant différents critères :
L’origine de la faute.
La cause de la faute.
La durée de la faute.
La détectabilité de la faute.
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L’origine de la faute

Le type de composant qui est responsable de la faute : lien de
communication ou nœud.

Cournier & Devismes Introduction à la tolérance aux fautes 12 janvier 2026 15 / 99



Les fautes
La tolérance aux fautes

Impossibilité du consensus asynchrone avec 0 ou 1 crash
Conclusion

Définition
Classification des fautes
Exemple de fautes (pannes)

La cause de la faute

La faute peut être
bénigne : non volontaire, e.g., due à un problème matériel, ou
maligne : due à une intention (malveillante ou malicieuse) extérieure au
système.
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La durée de la faute

Si la durée d’une faute est supérieure au temps restant de l’exécution du
protocole, elle est dite définitive ou franche,
Sinon elle est dite transitoire ou intermittente.

La différence entre transitoire et intermittente est définie par la fréquence.
Dans le premier cas, elle se produit de manière isolée, c’est-à-dire
rarement (en moyenne une fois pendant le temps d’exécution du
protocole).
Dans le second cas, elle se produit régulièrement
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La détectabilité de la faute

Une faute est détectable si son incidence sur la cohérence de l’état d’un
processus permet à celui-ci de s’en apercevoir.
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Panne crash

Panne franche d’un processus.

Le processus cesse définitivement de faire des pas de calculs.
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Perte intermittente de messages

Régulièrement un lien perd des messages.

Deux hypothèses sont généralement utilisées dans ce cas :
Soit on suppose que les pertes sont équitables,
Soit on suppose qu’il y a un taux de pertes de message (connu ou
inconnu des processus).

Lorsque les pertes sont équitables, le lien de commmunication vérifie
l’hypothèse suivante : si des messages sont envoyés infiniment souvent, alors
une infinité de messages est livrée.

On parle aussi de fautes par omission : à divers instants de l’exécution, un
composant du réseau omet de communiquer avec un autre en réception ou
en émission.
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Faute transitoire

C’est un comportement erroné d’un à plusieurs composants du réseau durant
une certaine période (finie).

Une fois que cette période est passée, les composants reprennent un
comportement correct. Cependant, l’état du système est perturbé.

Le système subit les effets de la faute, e.g., certains messages ont été
corrompus.

On parlera alors de fautes d’état : des composants du système ont subi un
changement d’état non prévu par l’algorithme.

Par exemple, cela peut être des corruptions de mémoires locales de processus
ou de contenus de message, ou encore de la duplication de messages.
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Fautes byzantines

Les fautes byzantines sont dues à des processus byzantins qui ont un
comportement arbitraire, ne suivant plus (nécessairement) le code de leurs
algorithmes locaux.

Cela peut être dû à une erreur matérielle, un virus ou la corruption du code
de l’algorithme.
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Idée

Les réseaux modernes sont à grande-échelle et fait de machines hétérogènes
et produites en masses à faible coût, e.g.

Internet
17,6 milliard d’objets connectés en 2016
Internet des objets

Réseaux sans fils
Communication radio : beaucoup de pertes de messages
Crash de machines à cause des batteries limitées

⇒ Forte probabilité de pannes
⇒ Intervention humain impossible ou au moins non-souhaitable
⇒ Besoin de tolérance aux fautes, i.e., une prise en compte automatique de
la possibilité de l’arrivée de fautes au niveau algorithmique.
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Objectif

L’objectif principal de la tolérance aux fautes est d’éviter de réinitialiser le
réseau après chaque panne.

Ainsi, la tolérance aux fautes qualifie l’aptitude d’un système à résister à ou
récupérer des fautes sans intervention extérieure (humaine par exemple).
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Approches pour la tolérance aux fautes

Deux catégories principales :
Les algorithmes robustes.
Les algorithmes (auto)stabilisants.
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Algorithmes robustes

Ils abordent le problème de tolérance aux fautes selon une approche
pessimiste où les processus suspectent toutes les informations qu’ils recoivent.

Le but est de « masquer » l’effet des pannes à l’utilisateur : on garantit
toujours la spécification de l’algorithme en dépit des pannes.
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Les algorithmes (auto)stabilisants

Ils abordent le problème selon une approche optimiste, on fait confiance au
système mais si on détecte un dysfonctionnement, on le corrige.

Le système (en particulier l’utilisateur) subit l’effet des pannes : cela cause un
comportement anormal de processus, parfois même non-défaillants, mais
garantit le retour vers un comportement global normal en un temps fini après
que les fautes ont cessé, c’est une approche « non-masquante ».

L’autostabilisation est considérée comme lightweight (i.e., à surcoût faible)
par rapport à l’approche robuste.
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Le résultat (FLP’85)

« Il est impossible de résoudre de manière déterministe le consensus (binaire)
dans un système asynchrone où au plus un processus peut être défaillant (un
crash) ».

Fisher, Lynch et Paterson (1985)

N.b., Pas d’information sur l’éventuelle panne (e.g., pas de détecteurs de
pannes). De plus, si la panne arrive, elle peut arriver n’importe quand durant
l’exécution.

N.b., ce résultat concerne uniquement l’approche robuste.
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Le consensus (binaire)
Multi-initiateurs

Pour tout processus p
Entrée : vp ∈ {0,1}, une constante
Sortie : dp ∈ {⊥,0,1} initialisée à ⊥ ;

p doit décider (i.e., affecter) une valeur booléenne dans dp en respectant
les conditions suivantes :

Intégrité : Tout processus décide au plus une fois.
Accord (uniforme) : Si deux processus p et q décident, alors ils décident

la même valeur, dp = dq.
Validité : Toute valeur décidée est l’une des valeurs initiales.

Terminaison : Tout processus correct décidera un jour.

ATTENTION :
Si pour tout processus p, vp = 0 (resp. vp = 1), alors la valeur décidée doit être 0 (resp. 1).
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Le consensus dans les systèmes sans pannes

Avec un réseau de communications connexe : facile !

Élection de leader (multi-initiateurs).

Le leader collecte les propositions en utilisant une propagation
d’information avec retour.

Le leader décide en fonction de toutes les propositions et diffuse sa
décision (diffusion simple).

Les autres processus décident comme le leader à la réception de sa
décision.

Toute règle d’intégrité déterministe vérifiant la validité est valable.

E.g., si un processus a reçu au moins ⌈n
2⌉ valeurs 0, il décide 0, sinon il

décide 1.
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Élection de leader (multi-initiateurs).

Le leader collecte les propositions en utilisant une propagation
d’information avec retour.

Le leader décide en fonction de toutes les propositions et diffuse sa
décision (diffusion simple).

Les autres processus décident comme le leader à la réception de sa
décision.

Toute règle d’intégrité déterministe vérifiant la validité est valable.

E.g., si un processus a reçu au moins ⌈n
2⌉ valeurs 0, il décide 0, sinon il

décide 1.
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Aspect fondamental du résultat

1 Le consensus (binaire) est le problème d’accord le plus simple.

(accord sur deux valeurs booléennes)

Autres problèmes d’accord : le consensus multi-valué, l’élection, le registre
partagé, la diffusion atomique, la duplication de machine d’état, la
synchronisation, . . .

Les problèmes d’accord sont omniprésents en système distribué. (base de
donnée, allocation de ressource, . . .)

2 L’impossibilité est obtenue malgré des hypothèses très fortes sur le système :
canaux fiables, au plus une panne, réseau complet, les processus ont des
identifiants uniques, . . .
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Plan

1 Les fautes
Définition
Classification des fautes
Exemple de fautes (pannes)

2 La tolérance aux fautes
Définition
Approches

3 Impossibilité du consensus asynchrone avec 0 ou 1 crash
Introduction
Modèle
Preuve d’impossibilité

4 Conclusion
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Remarque préliminaire

Le modèle doit être plutôt fort afin de rendre la preuve d’impossibilité aussi
largement applicable que possible.
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Liens

Asynchrones

Fiables : chaque message finit par être livré, exactement une fois et
seulement s’il a été envoyé.

Ainsi, chaque message envoyé finit par être reçu à condition que le
processus destinataire essaie de le recevoir infiniment souvent.

Ordre d’arrivée : les messages peuvent être retardés arbitrairement
longtemps et sont livrés dans n’importe quel ordre.

Cournier & Devismes Introduction à la tolérance aux fautes 12 janvier 2026 40 / 99



Les fautes
La tolérance aux fautes

Impossibilité du consensus asynchrone avec 0 ou 1 crash
Conclusion

Introduction
Modèle
Preuve d’impossibilité

Liens

Asynchrones
Fiables : chaque message finit par être livré, exactement une fois et
seulement s’il a été envoyé.

Ainsi, chaque message envoyé finit par être reçu à condition que le
processus destinataire essaie de le recevoir infiniment souvent.

Ordre d’arrivée : les messages peuvent être retardés arbitrairement
longtemps et sont livrés dans n’importe quel ordre.

Cournier & Devismes Introduction à la tolérance aux fautes 12 janvier 2026 40 / 99



Les fautes
La tolérance aux fautes

Impossibilité du consensus asynchrone avec 0 ou 1 crash
Conclusion

Introduction
Modèle
Preuve d’impossibilité

Liens

Asynchrones
Fiables : chaque message finit par être livré, exactement une fois et
seulement s’il a été envoyé.

Ainsi, chaque message envoyé finit par être reçu à condition que le
processus destinataire essaie de le recevoir infiniment souvent.

Ordre d’arrivée : les messages peuvent être retardés arbitrairement
longtemps et sont livrés dans n’importe quel ordre.

Cournier & Devismes Introduction à la tolérance aux fautes 12 janvier 2026 40 / 99



Les fautes
La tolérance aux fautes

Impossibilité du consensus asynchrone avec 0 ou 1 crash
Conclusion

Introduction
Modèle
Preuve d’impossibilité

Processus
Il y a n ≥ 2 processus identifiés et au moins n − 1 sont corrects.

Un processus est correct s’il exécute une infinité de pas de calculs, sinon il est
défaillant, c’est-à-dire qu’il va tomber en panne. Dans ce cas, il s’agit d’une
panne crash définitive.
Un processus défaillant n’exécute qu’un nombre fini de pas de calculs.

Au plus un processus peut tomber en panne.

Les processus n’ont aucun accès à une horloge globale.
Les processus n’ont pas d’information sur les pannes arrivées ou à venir (e.g.,
détecteur de pannes).
Processus :

Automate déterministe
Mémoire locale, potentiellement infinie
Capable de communiquer avec tous les autres processus par envoi de
messages (le réseau est complet).
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Exécution d’un pas de calcul

Étape atomique.

En une étape, un processus :
Essaie de recevoir un message,
Fait un calcul local

(basé sur la réception ou non d’un message)
(en cas de réception d’un message, le calcul pourra être basé sur le

contenu du message)
Envoie un nombre quelconque mais fini de messages aux autres
processus.

Rappel : par définition, tout processus correct exécute une infinité d’étapes
atomiques 1.

1. Ainsi, tout message envoyé à un processus correct finit par être reçu par ce dernier.
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Intuition

Dans ce modèle, il est impossible pour un processus de détecter si un autre
processus est en panne ou s’il est simplement très lent.
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Encore plus général : le consensus faible

Pour tout processus p

Entrée : vp ∈ {0,1}, une constante

Sortie : dp ∈ {⊥,0,1} initialisée à ⊥ ;
p doit décider une valeur booléenne dans dp en respectant les
conditions suivantes :

Intégrité : Tout processus décide au plus une fois.
Accord (uniforme) : Si deux processus p et q décide, alors ils

décident la même valeur, dp = dq.

Validité faible : Chacune des deux valeurs (0 ou 1) doit pouvoir
être décidée (peut-être, à partir de
configurations initiales différentes)

Terminaison faible : Au moins un processus doit finir par décider
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Algorithme de consensus

Soit P un algorithme de consensus faible.
Chaque processus p a

un bit d’entrée vp ∈ {0,1},
une variable de sortie dp qui peut prendre les valeurs {⊥,0,1},
et un espace de stockage interne non borné.
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États

État interne : Les valeurs des variables d’entrée, sortie, internes et le
compteur de programme.

États internes initiaux : donnent une valeur fixée à chaque variable sauf au
bit d’entrée vp.

Il y a deux états internes initiaux possibles par processus,
l’un où l’entrée vaut 0 et l’autre où l’entrée vaut 1.

En particulier, la variable de sortie dp a pour valeur initiale
⊥ (le processus n’a pas encore décidé).

États de décision : Les états internes dans lesquels la valeur de la variable de
sortie du processus est 0 ou 1.
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États : exemple

Supposons un protocole où chaque processus p a une seule variable entière
interne x initialisée à 0.

Exemple d’état interne :
⟨vp = 0,dp =⊥,xp = 10,CPp = 0x4040⟩

Exemple d’état interne initial :
⟨vp = 0,dp =⊥,xp = 0,CPp = 0x4000⟩

Exemple d’états de décision :
⟨vp = 0,dp = 1,xp = 30,CPp = 0x4048⟩
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⟨vp = 0,dp = 1,xp = 30,CPp = 0x4048⟩
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Algorithme local = Fonction de transition

Chaque processus agit de manière déterministe en fonction de sa fonction de
transition :

mêmes entrées (état, et message ou absence de message reçu) ⇒ mêmes
sorties (état et envoi de messages éventuel).

La fonction de transition ne peut pas changer la valeur de la variable de
sortie dans un état de décision : cette variable ne peut être écrite qu’une
fois ! (Intégrité)
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Messages

Message : (p,m) où p l’identité du processus destinataire et m la valeur du
message, m ∈ M.

Réseau : multi-ensemble de messages 2, appelé tampon-mémoire, où sont
gardés les messages envoyés non encore reçus.

envoi(p,m) : Met (p,m) dans le tampon-mémoire.
reçoit(p) : Supprime un message (p,m) du tampon-mémoire et

retourne m (dans ce cas, (p,m) est reçu)
ou
retourne ∅ et laisse le tampon-mémoire inchangé (en
particulier, s’il n’existe pas de message pour p).

2. Pas d’ordre car communications ne sont pas FIFO !
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Non-déterminisme

Le système de messages se comporte de manière non-déterministe.

Seule condition : si reçoit(p) est exécutée infiniment souvent, alors tous
les messages (p,_) finissent par être reçus.

En particulier, le système de messages peut retourner ∅ un nombre fini de
fois en réponse de l’appel reçoit(p), bien qu’un message (p,m) soit
présent dans le tampon-mémoire. (Asynchronisme)
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Exemple

Initialement

P1 P2

P3P4
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Exemple

P1 exécute envoi(P2,1)

P1 P2

P3P4

(P2,1)

Cournier & Devismes Introduction à la tolérance aux fautes 12 janvier 2026 52 / 99



Les fautes
La tolérance aux fautes

Impossibilité du consensus asynchrone avec 0 ou 1 crash
Conclusion

Introduction
Modèle
Preuve d’impossibilité

Exemple

P3 exécute envoi(P2,1)

P1 P2

P3P4

(P2,1)
(P2,1)
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Exemple

P1 exécute envoi(P3,0)

P1 P2

P3P4

(P2,1)
(P3,0)

(P2,1)
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Exemple

reçoit(P1) retourne ∅ à P1

P1 P2

P3P4

(P2,1)
(P3,0)

(P2,1)
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Exemple

reçoit(P2) retourne 1 à P2

P1 P2

P3P4

(P2,1)
(P3,0)
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Exemple

reçoit(P2) retourne ∅ à P2

P1 P2

P3P4

(P2,1)
(P3,0)
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Exemple

P3 exécute envoi(P4,0)

P1 P2

P3P4

(P2,1)
(P3,0)

(P4,0)
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Exemple

reçoit(P2) retourne 1 à P2

P1 P2

P3P4

(P3,0)

(P4,0)
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Configurations

Configuration : état interne de chaque processus
+
Contenu du tampon-mémoire de message.

Configuration initiale :
Tous les processus sont dans un état initial et
le tampon-mémoire de message est vide.
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Configuration : exemple

Avec un réseau à 3 processus p1, p2, p3 où chaque processus a une seule
variable interne entière x initialisée à 0

Configuration :

[⟨vp1 = 0,dp1 =⊥,xp1 = 10,CPp1 = 0x4040⟩,
⟨vp2 = 0,dp2 = 1,xp2 = 32,CPp2 = 0x4048⟩,
⟨vp3 = 1,dp3 =⊥,xp3 = 14,CPp3 = 0x4044⟩,
{(p2,ma),(p3,ma),(p3,mb),(p3,mb)}]

Configuration initiale :

[⟨vp1 = 0,dp1 =⊥,xp1 = 0,CPp1 = 0x4000⟩,
⟨vp2 = 0,dp2 =⊥,xp2 = 0,CPp2 = 0x4020⟩,
⟨vp3 = 1,dp3 =⊥,xp3 = 0,CPp3 = 0x4010⟩, ∅]
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Étape

Passage d’une configuration à une autre : exécution atomique de la fonction de
transition d’un seul processus.

Soit C une configuration. Une étape se déroule en deux phases :
1 p exécute reçoit(p) pour obtenir une valeur m ∈ M ∪{∅}.
2 En fonction de l’état interne de p dans C et de m,

p passe dans un nouvel état interne et
envoie un nombre fini de messages aux autres processus.

L’étape est entièrement déterminée par la paire e = (p,m) : l’évènement e

→ e peut-être vu comme « p reçoit m ».

e(C) : configuration résultant de l’application de e sur C .
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Évènement applicable

L’évènement (p,∅) peut toujours être appliqué sur n’importe quelle
configuration C : il est toujours possible pour un processus d’exécuter une
nouvelle étape. (asynchronisme)

L’évènement (p,m) avec m ∈ M peut être appliqué sur configuration C
seulement si dans la configuration C le tampon-mémoire contient (p,m).
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Ordonnancement
Un ordonnancement depuis C est une suite finie ou infinie σ d’évènements qui
peuvent être appliqués séquentiellement depuis C .

Soit σ = e0,e1,e2,e3,e4,e5,e6, où
e0 = (p3,∅),
e1 = (p1,∅),
e2 = (p1,ma),
e3 = (p1,∅),
e4 = (p2,ma),
e5 = (p1,ma) et
e6 = (p3,mb).

Exemple : Si le tampon-mémoire de messages dans C contient (p1,ma), (p2,ma),
(p1,ma) et p2 envoie mb à p3 sur réception de ma, alors σ est un ordonnancement
possible depuis C .
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Exécution
La suite de configurations associée à l’application séquentielle d’un
ordonnancement depuis une configuration est appelée exécution.

Exemple : avec l’ordonnancement σ = e0,e1,e2,e3,e4,e5,e6 depuis la
configuration C0, on obtient l’exécution :

C0,C1,C2,C3,C4,C5,C6,C7

où
C1 = e0(C0),
C2 = e1(C1),
C3 = e2(C2),
C4 = e3(C3),
C5 = e4(C4),
C6 = e5(C5) et
C7 = e6(C6).
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Atteignabilité
Si σ est fini, alors nous notons σ(C0) la configuration obtenue en appliquant
séquentiellement σ depuis C0.

La configuration σ(C0) est dite atteignable depuis C0.

Dans l’exemple précédent, l’exécution de σ depuis C0 mène à C7 :

σ(C0) = C7

Donc, C7 est atteignable depuis C0.

Une configuration atteignable depuis une configuration initiale est dite
accessible.

Si C0 est une configuration initiale, alors C7 est accessible.

Dans la suite, nous ne considérerons que des configurations accessibles.
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Si σ est fini, alors nous notons σ(C0) la configuration obtenue en appliquant
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Vocabulaire
Une configuration C a une valeur de décision v si au moins un processus p est dans un état
de décision avec dp = v .

Un algorithme de consensus est partiellement correct s’il vérifie les deux conditions
suivantes :

1 Aucune configuration accessible a plus d’une valeur de décision. (Accord)

2 Pour chaque valeur v ∈ {0,1}, au moins une configuration accessible a une valeur
de décision v . (Validité faible)

(N.b., l’intégrité est assurée par définition de la variable de sortie, qui ne peut être écrite
qu’une seule fois)

Une exécution est admissible si au plus un processus est défaillant (il fait un nombre fini
de pas de calcul) et tous les messages envoyés vers des processus corrects finissent par
être reçus.

Une exécution est une exécution décidante si au moins un processus atteint un état de
décision durant l’exécution. (terminaison faible)

Cournier & Devismes Introduction à la tolérance aux fautes 12 janvier 2026 67 / 99



Les fautes
La tolérance aux fautes

Impossibilité du consensus asynchrone avec 0 ou 1 crash
Conclusion

Introduction
Modèle
Preuve d’impossibilité

Vocabulaire
Une configuration C a une valeur de décision v si au moins un processus p est dans un état
de décision avec dp = v .

Un algorithme de consensus est partiellement correct s’il vérifie les deux conditions
suivantes :

1 Aucune configuration accessible a plus d’une valeur de décision. (Accord)

2 Pour chaque valeur v ∈ {0,1}, au moins une configuration accessible a une valeur
de décision v . (Validité faible)

(N.b., l’intégrité est assurée par définition de la variable de sortie, qui ne peut être écrite
qu’une seule fois)

Une exécution est admissible si au plus un processus est défaillant (il fait un nombre fini
de pas de calcul) et tous les messages envoyés vers des processus corrects finissent par
être reçus.

Une exécution est une exécution décidante si au moins un processus atteint un état de
décision durant l’exécution. (terminaison faible)

Cournier & Devismes Introduction à la tolérance aux fautes 12 janvier 2026 67 / 99



Les fautes
La tolérance aux fautes

Impossibilité du consensus asynchrone avec 0 ou 1 crash
Conclusion

Introduction
Modèle
Preuve d’impossibilité

Vocabulaire
Une configuration C a une valeur de décision v si au moins un processus p est dans un état
de décision avec dp = v .

Un algorithme de consensus est partiellement correct s’il vérifie les deux conditions
suivantes :

1 Aucune configuration accessible a plus d’une valeur de décision. (Accord)

2 Pour chaque valeur v ∈ {0,1}, au moins une configuration accessible a une valeur
de décision v . (Validité faible)

(N.b., l’intégrité est assurée par définition de la variable de sortie, qui ne peut être écrite
qu’une seule fois)

Une exécution est admissible si au plus un processus est défaillant (il fait un nombre fini
de pas de calcul) et tous les messages envoyés vers des processus corrects finissent par
être reçus.

Une exécution est une exécution décidante si au moins un processus atteint un état de
décision durant l’exécution. (terminaison faible)

Cournier & Devismes Introduction à la tolérance aux fautes 12 janvier 2026 67 / 99



Les fautes
La tolérance aux fautes

Impossibilité du consensus asynchrone avec 0 ou 1 crash
Conclusion

Introduction
Modèle
Preuve d’impossibilité

Vocabulaire
Une configuration C a une valeur de décision v si au moins un processus p est dans un état
de décision avec dp = v .

Un algorithme de consensus est partiellement correct s’il vérifie les deux conditions
suivantes :

1 Aucune configuration accessible a plus d’une valeur de décision. (Accord)

2 Pour chaque valeur v ∈ {0,1}, au moins une configuration accessible a une valeur
de décision v . (Validité faible)

(N.b., l’intégrité est assurée par définition de la variable de sortie, qui ne peut être écrite
qu’une seule fois)

Une exécution est admissible si au plus un processus est défaillant (il fait un nombre fini
de pas de calcul) et tous les messages envoyés vers des processus corrects finissent par
être reçus.

Une exécution est une exécution décidante si au moins un processus atteint un état de
décision durant l’exécution. (terminaison faible)

Cournier & Devismes Introduction à la tolérance aux fautes 12 janvier 2026 67 / 99



Les fautes
La tolérance aux fautes

Impossibilité du consensus asynchrone avec 0 ou 1 crash
Conclusion

Introduction
Modèle
Preuve d’impossibilité

Spécification

Un algorithme de consensus P est correct en dépit d’au plus une faute s’il est
partiellement correct et toutes ses exécutions admissibles sont
décidantes.
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Plan
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Premier résultat : commutativité
Lemme 1

Soit C une configuration. Soient σ1 et σ2 deux ordonnancements qui mènent respectivement à C1
et C2 depuis C .
Si les ensembles de processus exécutant respectivement des étapes dans σ1 et σ2 sont disjoints,
alors

σ1 peut être appliqué à C2 et σ2 peut être appliqué à C1,
et tous deux mènent à la même configuration, C3.

Preuve. Par définition du système et car σ1 et σ2 n’ont pas de processus en commun.

C

C1

C3

C2

σ1

σ1

σ2

σ2

2
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Exemple
σ1 = (P1,1), c.-à-d., P2 a envoyé 1 à P1 précédemment, et
σ2 = (P2,2), c.-à-d., P1 a envoyé 2 à P2 précédemment.
Supposons que chaque processus stocke dans X la dernière valeur reçue.

<XP1=0,XP2=0>
(P1,1),(P2,2), ...

<XP1=1,XP2=0>
(P2,2), ...

<XP1=0,XP2=2>
(P1,1), ...

<XP1=1,XP2=2>
...

(P1,1) (P2,2)

(P1,1)(P2,2)
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Idée intuitive de la preuve

Supposons l’existence d’un protocole de consensus P qui est correct en dépit
d’au plus une faute.

L’idée est de montrer certaines circonstances sous lesquelles P ne peut
jamais décider.

Nous prouvons cela en deux étapes.
1 Nous montrons qu’il existe des configurations initiales où la valeur de

décision n’est pas déjà déterminée.
2 Ensuite, nous construisons une exécution admissible qui évite en

permanence d’exécuter des étapes qui engagent le système vers une
décision particulière.
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Configurations bivalentes et univalentes
Soit C une configuration et soit V l’ensemble des valeurs de décision des
configurations atteignables depuis C .

C est bivalente si |V | = 2.

C est univalente si |V | = 1.

Dans le cas d’une configuration univalente, nous parlerons d’0-valente ou 1-valente
en fonction de la valeur de décision correspondante.

Puisque P est correct et puisqu’il y a toujours des exécutions admissibles, on a
toujours V ̸= ∅.
(toute exécution admissible est décidante, d’après la spécification)

Puisque P est correct, toute configuration qui a une valeur de décision est
univalente.

Conséquence : des configurations 0-valentes et 1-valentes sont atteignables depuis
n’importe quelle configuration bivalente, s’il y en a . . .
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Résultat 2
Lemme 2
P a (au moins) une configuration initiale bivalente.

Idée de la preuve : quelle que soit la procédure pour décider une valeur, il existe toujours
une configuration initiale à partir de laquelle les deux valeurs peuvent être décidées à cause
du fait qu’un crash peut arriver.

Exemple : avec au plus un crash on peut collecter au plus n − 1 valeurs proposées (sinon
interblocage en cas de crash initial, par exemple)
Supposons que n est impair et qu’on décide lorsqu’on a obtenu n − 1 propositions.
Supposons qu’on décide 0 lorsqu’on a obtenu un nombre de « 0 » supérieur ou égal au
nombre de « 1 ». Sinon on décide 1.
Une configuration initiale où il y a un « 1 » proposé de plus que de « 0 », est bivalente.

→ si un processus proposant « 1 » ne fait aucun pas de calcul (c’est possible s’il tombe
en panne), alors « 0 » sera décidé.

→ si un processus proposant « 0 » ne fait aucun pas de calcul (c’est possible s’il tombe
en panne), alors « 1 » sera décidé.
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Preuve du lemme 2
Supposons, par contradiction, que P n’a pas de configuration initiale bivalente.

De part la correction partielle, P doit avoir à la fois des configurations initiales 0-valentes et
1-valentes.

Nous disons que deux configurations initiales sont adjacentes si elles diffèrent par
exactement une valeur initiale vp d’un seul processus p.

Toute paire de configurations initiales sont jointes par au moins une chaîne de
configurations initiales, chacune adjacente à la suivante : par exemple de (0,0,0) à (1,1,1)
on a, entre autres : (0,0,0) → (0,0,1) → (0,1,1) → (1,1,1)

On applique cette propriété à un couple de configurations initiales 0-valent/1-valent : il
existe nécessairement une configuration initiale 0-valente C0 adjacente à une configuration
initiale 1-valente C1.

Ca → Cb . . . Cm → Cn . . . Cx → Cy
0-valent 0-valent 0-valent 1-valent 1-valent 1-valent

C0 C1

Soit p le processus dont la valeur initiale diffère dans C0 et C1.
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Preuve du lemme 2 (suite)

Considérons maintenant une exécution admissible décidante depuis C0 où
p n’exécute aucune étape, et soit σ l’ordonnancement associé.

σ peut aussi être appliqué à C1.

Les configurations correspondantes dans les deux exécutions sont identiques
sauf pour l’état interne de p.

Ces deux exécutions finissent par atteindre la même valeur de décision (p
n’est pas impliqué dans la décision).

Si la valeur décidée est 1, alors C0 n’est pas 0-valente, sinon C1 n’est pas
1-valente, contradiction. 2
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Résultat 3

BUT : Montrer qu’il est toujours possible d’atteindre une configuration
bivalente à partir d’une configuration bivalente, en retardant un évènement
particulier.

Lemme 3
Soit C une configuration bivalente de P, et soit e = (p,m) un évènement
applicable sur C .
Soit Γ l’ensemble des configurations atteignables depuis C sans appliquer e,
et soit

D = e(Γ ) = {e(E ) | E ∈ Γ et e est applicable sur E}.

Alors, D contient une configuration bivalente.
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Preuve du lemme 3
e est applicable sur C . Donc, par définition de Γ et le fait que les messages peuvent
être retardés arbitrairement longtemps, e est applicable sur toutes les configurations
E de Γ . Donc, D = e(Γ ) = {e(E ) | E ∈ Γ}

Supposons maintenant, par contradiction, que D ne contient aucune configuration
bivalente. Donc, chaque configuration de D est univalente.

e(C⋆) ∈ D . . . : univalentes
↑ e

C⋆ = e⋆(C ′) ∈ Γ . . .
e⋆ ̸=e
↗

C ∈ Γ
e′ ̸=e−−−→ C ′ = e′(C) ∈ Γ

e′′ ̸=e−−−→ C ′′ = e′′(C ′) ∈ Γ . . .
↓ e ↓ e ↓ e

e(C) ∈ D e(C ′) ∈ D e(C ′′) ∈ D . . . : univalentes
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Preuve du lemme 3
Soit Ei une configuration i-valente atteignable depuis C , pour i = 0,1 (E0 et E1 existent car C est
bivalente).

Si Ei ∈ Γ , posons Fi = e(Ei ) ∈ D.

C ∈ Γ
e′ ̸=e

−−−→ C′ ∈ Γ
e′′ ̸=e

−−−−→ Ei = C′′ ∈ Γ . . .
↓ e ↓ e ↓ e

e(C) ∈ D e(C′) ∈ D Fi = e(C′′) ∈ D . . . : univalentes
Sinon, e a été appliqué pour atteindre Ei et donc il existe une configuration Fi ∈ D à partir
de laquelle Ei est atteignable. Ex :

C ∈ Γ
e′ ̸=e

−−−→ C′ ∈ Γ
e′′ ̸=e

−−−−→ C′′ ∈ Γ . . .

↓ e ↓ e ↓ e

e(C) ∈ D e(C′) ∈ D Fi = e(C′′) ∈ D . . . : univalentes

↓ e′′′ ̸= e

. . .

↓ e′′′′ ̸= e

Ei

Dans tous les cas, Fi est i-valente puisque Fi n’est pas bivalente (Fi ∈ D et D ne contient aucune
configuration bivalente). Puisque Fi ∈ D, pour i = 0,1, D contient à la fois des configurations
0-valentes et 1-valentes.
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Preuve du lemme 3

Nous disons maintenant que deux configurations sont voisines si l’une est
résultante de l’autre en une seule étape.

Puisque par hypothèse, D ne contient que des configurations univalentes, si
on applique e à C , on obtient une configuration univalente.

e(C⋆) ∈ D . . . : univalentes
↑ e

C⋆ = e⋆(C ′) ∈ Γ . . .
e⋆ ̸=e
↗

C ∈ Γ
e′ ̸=e−−−→ C ′ = e′(C) ∈ Γ

e′′ ̸=e−−−→ C ′′ = e′′(C ′) ∈ Γ . . .
↓ e ↓ e ↓ e

e(C) ∈ D e(C ′) ∈ D e(C ′′) ∈ D . . . : univalentes
i-valent
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Preuve du lemme 3

Quelque soit la valeur de décision à laquelle amène e(C), il existe une
configuration Cx atteignable depuis C , depuis laquelle on obtient une
configuration univalente pour l’autre valeur en appliquant e, d’après le point
précédent.

C ∈ Γ
e′ ̸=e

−−−→ C′ ∈ Γ
e′′ ̸=e

−−−−→ C′′ ∈ Γ
e′′′ ̸=e

−−−−→ Cx = C′′′ ∈ Γ . . .
↓ e ↓ e ↓ e ↓ e

e(C) ∈ D e(C′) ∈ D e(C′′) ∈ D e(C′′′) ∈ D . . . : univalentes
i-valent j-valent (j ̸= i)
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Preuve du lemme 3

Considérons maintenant l’ordonnancement σ amenant de C à Cx .

Soit Cy la première configuration atteinte avec σ telle que e(Cy ) est
univalente pour la même valeur que e(Cx ).

Soit Cz la configuration qui précède Cy avec σ.

Donc Cy et Cz sont voisines et e(Cy ) et e(Cz) sont univalentes pour des
valeurs différentes.

C ∈ Γ
e′ ̸=e

−−−→ Cz = C′ ∈ Γ
e′′ ̸=e

−−−−→ Cy = C′′ ∈ Γ
e′′′ ̸=e

−−−−→ Cx = C′′′ ∈ Γ . . .
↓ e ↓ e ↓ e ↓ e

e(C) ∈ D e(C′) ∈ D e(C′′) ∈ D e(C′′′) ∈ D . . . : univalentes
i-valent i-valent j-valent j-valent (j ̸= i)
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Preuve du lemme 3

Posons C0,C1 ∈ Γ deux configurations voisines telles que Di = e(Ci) est
i-valente pour i = 0,1.
(Ces deux configurations existent d’après le point précédent.)

Sans perte de généralité, posons C1 = e′(C0), où e′ = (p′,m′).

C0
e′
−→ C1

↓ e ↓ e
D0 D1

0-valent 1-valent

Cas 1 : p′ ̸= p.
Cas 2 : p′ = p.
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Preuve du lemme 3, Cas 1 : p′ ̸= p
Si p′ ̸= p, alors D1 = e′(D0) d’après le lemme 1. C’est impossible, car tout
successeur d’une configuration 0-valente est par définition 0-valente.

C0

D0

D1

C1

e

e

e'

e'
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Preuve du lemme 3, Cas 2 : p′ = p
Considérons une exécution décidante finie depuis C0 dans laquelle p n’exécute aucune
étape. Soit σ l’ordonnancement correspondant, et soit A = σ(C0).

Lemme 1 : σ est applicable à Di , et mène à une configuration i-valente Ei = σ(Di ), i = 0,1.

De plus, d’après le lemme 1, e(A) = E0 et e(e′(A)) = E1. D’où, A est bivalente.

Contradiction : l’exécution amenant à A est décidante, donc A doit être univalente.

C0

D0 D1

C1
e

e

e'

σ A

E1
E0

e

e

e'

σ

σ
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Preuve du lemme 3

Dans chaque cas, nous obtenons une contradiction, donc D contient une
configuration bivalente. 2
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Contradiction finale

Chaque exécution décidante démarrant d’une configuration bivalente mène
vers une configuration univalente.

Donc, il doit exister une certaine étape pour aller d’une configuration
bivalente à une configuration univalente. Une telle étape détermine la valeur
qui sera décidée.

Nous montrons maintenant qu’il est toujours possible que le système
s’exécute de telle manière qu’il évite toujours ce type d’étape, menant ainsi à
une exécution admissible non-décidante.
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Construction

Cette exécution se construit par blocs, à partir de la configuration initiale.

Nous assurons que l’exécution est admissible de la manière suivante :
une file d’attente de processus est maintenue (elle est initialement dans
un ordre quelconque), et
le tampon-mémoire de messages dans une configuration est ordonné en
fonction des temps auxquels les messages ont été envoyés, les plus
anciens en premier.
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Construction

Chaque bloc consiste en une à plusieurs étapes.

Le bloc courant termine lorsque le processus en tête de la file de processus
exécute une étape de calcul dans laquelle si il y avait des messages pour lui
dans le tampon-mémoire de messages au début du bloc, le plus ancien a été
reçu.

Le processus est alors déplacé en queue de file.
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Construction

Dans toute suite infinie de tels blocs, chaque processus exécute une infinité
d’étape et reçoit tous les messages qu’on lui a envoyés. Ainsi, on obtient une
exécution admissible.

Le problème, bien sûr, est de construire une telle exécution en évitant
toujours qu’une décision soit prise.
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Construction
Soit C0 une configuration initiale bivalente (une telle configuration existe,
d’après le lemme 2).

L’exécution commence en C0, et nous assurons que tout bloc commence
dans une configuration bivalente.

Construisons un bloc commençant dans une configuration bivalente C en
supposant que le processus p est en tête de la file de priorités.

Soit m le message le plus ancien pour p dans le tampon-mémoire de
message, si un tel message existe, sinon posons m = ∅.

Soit e = (p,m). D’après le lemme 3, il existe une configuration bivalente C ′

atteignable depuis C avec un ordonnancement où e est le dernier évènement
appliqué. La suite de configurations correspondante définit le bloc.
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Résultat final

Puisque chaque bloc finit dans une configuration bivalente, nous pouvons
construire un ordonnancement infini.

De plus, par construction, l’exécution résultant de cet ordonnancement est
admissible et aucune décision n’est jamais atteinte.

Ainsi, nous obtenons la contradiction et nous concluons avec le théorème
suivant :
Théorème 1
Il n’existe pas d’algorithme déterministe de consensus (faible) qui est correct
en dépit d’au plus une faute.
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Les sources de l’impossibilité

Ce résultat d’impossibilité fondamentale est principalement dû :
aux fautes,
l’asynchronisme,
au déterminisme,
et à la décision irrévoquable imposée par la spécification.

Qu’est-ce qu’on fait ?

Si on supprime ou affaiblit l’une de ses hypothèses, le problème devient
soluble.
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Les fautes

Sans fautes, le consensus a une solution triviale (déjà vue)

Si on fait des hypothèses plus faibles sur la nature des fautes, le consensus
peut être solvable.
Par exemple, si on considère que les crashes sont des processus mort-nés
(initially dead) 3 et qu’il y a une majorité de corrects.

Plus généralement, la notion de détecteur de pannes a été introduite par
Chandra et Toueg : un détecteur de panne est un oracle formalisant la
connaissance sur les pannes nécessaires (et suffisante) pour résoudre un
problème.

3. Un processus « mort-né » n’exécute jamais le moindre pas de calcul durant l’exécution de
l’algorithme.
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L’asynchronisme

Si le système est synchrone, le consensus est solvable quelque soit le nombre
de pannes crash (l’algorithme « FloodSet »)

Plus généralement, des algorithmes de consensus existent dans des systèmes
partiellement synchrones
(seule une partie des liens et des processus est synchrone)
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Le déterminisme

Il existe des solutions probabilistes au problème du consensus.

Par exemple, l’algorithme de Ben-Hor assure une terminaison avec probabilité
1 (méthode de Las Vegas) s’il y a une majorité de corrects

Il existe aussi des solutions de type Monte-Carlo : terminaison déterministe
mais probabilité faible d’avoir un conflit

Dans les deux cas (Las Vegas/Monte Carlo) la spécification assurée par les
solutions est donc plus faible !
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La décision

Une dernière approche consiste à affaiblir la spécification au niveau de la
décision

Par exemple, le consensus ultime : les décisions ne sont plus irrévocables,
mais le système converge vers une configuration à partir de laquelle il y a une
unique valeur de décision qui ne change plus jamais

(proche du concept d’autostabilisation)
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Conclusion

L’ensemble de ces approches est au programme de

« Systèmes Distribués II »

en Master 2
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